
On the Upward/Downward Closures of Petri Nets∗

Mohamed Faouzi Atig1, Roland Meyer†2, Sebastian Muskalla3, and
Prakash Saivasan4

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

2 TU Braunschweig, Germany
roland.meyer@tu-bs.de

3 TU Braunschweig, Germany
s.muskalla@tu-bs.de

4 TU Braunschweig, Germany
p.saivasan@tu-bs.de

Abstract
We study the size and the complexity of computing finite state automata (FSA) representing and
approximating the downward and the upward closure of Petri net languages with coverability as
the acceptance condition. We show how to construct an FSA recognizing the upward closure
of a Petri net language in doubly-exponential time, and therefore the size is at most doubly
exponential. For downward closures, we prove that the size of the minimal automata can be
non-primitive recursive. In the case of BPP nets, a well-known subclass of Petri nets, we show
that an FSA accepting the downward/upward closure can be constructed in exponential time.
Furthermore, we consider the problem of checking whether a simple regular language is included
in the downward/upward closure of a Petri net/BPP net language. We show that this problem
is EXPSPACE-complete (resp. NP-complete) in the case of Petri nets (resp. BPP nets). Finally,
we show that it is decidable whether a Petri net language is upward/downward closed.
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1 Introduction

Petri nets are a popular model of concurrent systems [14]. Petri net languages (with different
acceptance conditions) have been extensively studied during the last years, including deciding
their emptiness (which can be reduced to reachability) [31, 23, 25, 26], their regularity
[39, 11], their context-freeness [38, 27], and many other decision problems (e.g. [17, 2, 15]).
In this paper, we consider the class of Petri net languages with coverability as the acceptance
condition (i.e. the set of sequences of transition labels occurring in a computation reaching a
marking greater than or equal to a given final marking).

We address the problem of computing the downward and the upward closure of Petri net
languages. The downward closure of a language L, denoted by L↓ , is the set of all subwords,
all words that can be obtained from words in L by deleting letters. The upward closure of L,
denoted by L↑ , is the set of all superwords, all words that can be obtained from words in
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49:2 On the Upward/Downward Closures of Petri Nets

L by inserting letters. It is well-known that, for any language, the downward and upward
closure are regular and can be described by a simple regular expression (SRE). However, such
an expression is in general not computable, e.g. for example, it is not possible to compute
the downward closure of languages recognized by lossy channel systems [33].

In this paper, we first consider the problem of constructing a finite state automaton (FSA)
accepting the upward/downward closure of a Petri net language. We give an algorithm that
computes an FSA of doubly-exponential size for the upward closure in doubly-exponential
time. This is done by showing that every minimal word results from a computation of
length at most doubly exponential in the size of the input. Our algorithm is also optimal
since we present a family of Petri net languages for which the minimal finite state automata
representing their upward closure are of doubly-exponential size.

Our second contribution is a family of Petri net languages for which the size of the
minimal finite state automata representing the downward closure is non-primitive recursive:
The languages contain Ackermann many words. The downward closure of Petri net languages
has been shown to be effectively computable [17]. The algorithm is based on the Karp-Miller
tree [22], which has non-primitive recursive complexity.

Furthermore, we consider the SRE inclusion problem which asks whether the language of a
simple regular expression is included in the downward/upward closure of a Petri net language.
The idea behind SRE inclusion is to stratify the problem of computing the downward/upward
closure: Rather than having an algorithm computing all information about the language,
we imagine to have an oracle (e.g. an enumeration) making proposals for SREs that could
be included in the downward/upward closure. The task of the algorithm is merely to check
whether a proposed inclusion holds. We show that this problem is EXPSPACE-complete
in both cases. In the case of upward closures, we prove that SRE inclusion boils down to
checking whether the set of minimal words of the given SRE is included in the upward closure.
In the case of downward closures, we reduce the problem to the simultaneous unboundedness
problem for Petri nets, which is EXPSPACE-complete [11].

We also study the problem of checking whether a Petri net language actually is upward
or downward closed. This is interesting as it means that an automaton for the closure, which
we can compute with the aforementioned methods, is a precise representation of the system’s
behavior. We show that the problem of being upward/downward closed is decidable for
Petri nets. The result is a consequence of a more general decidability that we believe is of
independent interest. We show that checking whether a regular language is included in a
Petri net language (with coverability as the acceptance condition) is decidable. Here, we rely
on a decision procedure for trace inclusion due to Esparza et al. [21].

Finally, we consider BPP 1 nets [13], a subclass of Petri nets defined by a syntactic
restriction: Every transition is allowed to consume at most one token in total. We show
that we can compute finite state automata accepting the upward and the downward closure
of a BPP net language in exponential time. The size of the FSA is also exponential. Our
algorithms are optimal as we present a family of BPP net languages for which the minimal
FSA representing their upward/downward closure have exponential size. Furthermore, we
consider the SRE inclusion problem. We show that, in the case of BPP nets, it is NP-complete
for both, inclusion in the upward and in the downward closure. To prove the upper bound,
we reduce to the satisfiability problem for existential Presburger arithmetic (which is known
to be NP-complete [37]). The hardness is by a reduction from SAT to the emptiness of BPP
net languages, which in turn reduces to SRE inclusion.

1 BPP stands for basic parallel processes, a notion from process algebra.
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Related Work. Several constructions have been proposed in the literature to compute
finite state automata recognizing the downward/upward closure. In the case of Petri net
languages (with various acceptance conditions including reachability), it has been shown
that the downward closure is effectively computable [17]. With the results in this paper, the
computation and the state complexity have to be non-primitive recursive. For the languages
generated by context-free grammars, effective computability of the downward closure is due
to [40, 16, 10, 8]. For the languages recognized by one-counter automata, a strict subclass
of the context-free languages, it has been shown how to compute in polynomial time a
finite state automaton accepting the downward/upward closure of the language [6]. The
effective computability of the downward closure has also been shown for stacked counter
automata [43]. In [42], Zetzsche provides a characterization for a class of languages to have an
effective downward closure. It has been used to prove the effective computability of downward
closures of higher-order pushdown automata and higher-order recursion schemes [18, 9]. The
downward closure of the languages of lossy channel systems is not computable [33].

The computability results discussed above have been used to prove the decidability of
verification problems and to develop approximation-based program analysis methods (see e.g.
[5, 4, 3, 24, 30, 44]). Throughout the paper, we will give hints to applications in verification.

2 Preliminaries

In this section, we fix some basic definitions and notations that will be used throughout the
paper. For every i, j ∈ N with i ≤ j, we use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j} (resp.
[i..j[ for {k ∈ N | i ≤ k < j}). Let Σ be a finite alphabet. We use Σε to denote Σ∪ {ε}. The
length of a word u over Σ is denoted by |u|, where |ε| = 0. Let k ∈ N be a natural number,
we use Σk (resp. Σ≤k) to denote the set of all words of length equal (resp. smaller or equal)
to k. A language L over Σ is a (possibly infinite) set of finite words.

Let Γ be a subset of Σ. Given a word u ∈ Σ∗, we denote by πΓ(u) the projection of u
over Γ, i.e. the word obtained from u by erasing all the letters that are not in Γ.

The Parikh image of a word [34] counts the number of occurrences of all letters while
forgetting about their positioning. Formally, the function Ψ : Σ∗ 7→ NΣ takes a word w ∈ Σ∗
and gives the function Ψ(w) : Σ→ N defined by (Ψ(w))(a) =

∣∣π{a}(w)
∣∣ for all a ∈ Σ.

The subword relation � ⊆ Σ∗× Σ∗ [20] between words is defined as follows: A word
u = a1 . . . an is a subword of v, denoted u� v, if u can be obtained by deleting letters from
v or, equivalently, if v = v0a1v1 . . . anvn for some v0, . . . , vn ∈ Σ∗.

Let L be a language over Σ. The upward closure of L consists of all words that have a sub-
word in the language, L↑ = {v ∈ Σ∗ | ∃u ∈ L : u� v}. The downward closure of L contains
all words that are dominated by a word in the language, L↓ = {u ∈ Σ∗ | ∃v ∈ L : u� v}.
Higman showed that the subword relation is a well-quasi ordering [20], which means that
every set of words S ⊆ Σ∗ has a finite basis — a finite set of minimal elements v ∈ S such
that @u ∈ S : u 6= v, u� v. With finite bases, L ↑ and L ↓ are guaranteed to be regular
for every language L ⊆ Σ∗ [19]. Indeed, they can be expressed using the subclass of simple
regular languages defined by so-called simple regular expressions [1]. These SREs are choices
among products p, sre ::= p p sre + sre. Products interleave single letters a or (a+ ε) with
iterations over letters from subsets Γ ⊆ Σ of the alphabet: p ::= a p (a+ ε) p Γ∗ p p.p . The
syntactic size of an SRE sre is denoted by |sre| and defined as expected.

Finite State Automata. A finite state automaton (FSA) A is a tuple (Q,→, q0, Qf ,Σ)
where Q is a finite non-empty set of states, Σ is the finite input alphabet, → ⊆ Q×Σε×Q is
the non-deterministic transition relation, q0 ∈ Q is the initial state, and Qf ⊆ Q is the set of
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final states. We represent a transition (q, a, q′) ∈→ by q a→A q
′ and generalize the relation to

words in the expected way. The language of finite words accepted by A is denoted by L(A).
The size of A, denoted |A|, is defined by |Q|+ |Σ|. An FSA is minimal for its language L(A)
if there is no FSA B with L(A) = L(B) with a strictly smaller number of states.

Petri Nets. A (labeled) Petri net is a tuple N = (Σ, P, T, F, λ) [36]. Here, Σ is a finite
alphabet, P a finite set of places, T a finite set of transitions, F : (P × T ) ∪ (T × P )→ N a
flow function, and λ : T 7→ Σε a labelling function. When convenient, we will assume that the
places are ordered, P = [1..`] for some ` ∈ N. For a place or transition x ∈ P ∪ T , we define
the preset to consist of the elements that have an arc to x, •x = {y ∈ P ∪ T | F (y, x) > 0}.
The postset is defined similarly, x• = {y ∈ P ∪ T | F (x, y) > 0}.

To define the semantics of Petri nets, we use markings M : P → N that assign to
each place a number of tokens. A marking M enables a transition t, denoted M [t〉, if
M(p) ≥ F (p, t) for all p ∈ P . A transition t that is enabled may be fired, leading to the
new marking M ′ defined by M ′(p) = M(p)− F (p, t) + F (t, p) for all p ∈ P , i.e. t consumes
F (p, t) many tokens and produces F (t, p) many tokens in p. We write the firing relation
as M [t〉M ′. A computation π = M0[t1〉M1 · · · [tm〉Mm consists of markings and transitions.
We extend the firing relation to transition sequences σ ∈ T ∗ in the straightforward manner
and also write π = M0[σ〉Mm. A marking M is reachable from an initial marking M0 if
M0[σ〉M for some σ ∈ T ∗. A marking M covers another marking Mf , denoted M ≥Mf , if
M(p) ≥Mf (p) for all p ∈ P . A marking Mf is coverable from M0 if there is a marking M
reachable from M0 that covers Mf , M0[σ〉M ≥Mf for some σ ∈ T ∗.

Given a Petri net N , an initial marking M0, and a final marking Mf , the associated
covering language is L(N,M0,Mf ) = {λ(σ) | σ ∈ T ∗, M0[σ〉M ≥Mf} , where the labeling
function λ is extended to sequences of transitions in the straightforward manner. Given a
natural number k ∈ N, we define Lk(N,M0,Mf ) =

{
λ(σ)

∣∣ σ ∈ T≤k, M0[σ〉M ≥Mf

}
to be

the set of words accepted by computations of length at most k.
Let max(F ) denote the maximum of the range of F . The size of the Petri net N is

|N | = |Σ|+·|P |·|T |·(1+dlog2(1+max(F ))e) , i.e. we assume that the flow function is encoded
in binary. Similarly, the size of a marking M is |M | = |P | · (1 + dlog2(1 + max(M))e) ,
where max(M) denotes the maximum of the range of M . We define the token count
tc(M) = Σp∈PM(p) of a marking M to be the sum of all tokens assigned by M .

A Petri net N is said to be a BPP net if every transition consumes at most one token
from one place (i.e. Σp∈PF (p, t) ≤ 1 for every t ∈ T ).

3 Upward Closures

We consider the problem of constructing a finite state automaton accepting the upward
closure of a Petri net and a BPP net language, respectively. The upward closure offers an
over-approximation of the system behavior that is useful for verification purposes [30].

Petri Nets. We prove a doubly-exponential upper bound on the size of the finite state
automaton representing the upward closure of a Petri net language. Then, we present a
family of Petri net languages for which the minimal finite state automata representing their
upward closure have a size doubly exponential in the size of the input.

Upper Bound. Fix the Petri net N = (Σ, P, T, F, λ) and let M0 and Mf be the initial and
the final marking of interest. Define n = |N |+ |M0|+ |Mf |.
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I Theorem 1. One can construct an FSA of size O(22poly(n)) for L(N,M0,Mf )↑ .

The remainder of the section is devoted to proving the theorem. We will show that ev-
ery minimal word results from a computation of length at most O(22poly(n)). Let us call
such computations the minimal ones. Let k be a bound on the length of the minimal
computations. This means the language Lk(N,M0,Mf ) contains all minimal words of
L(N,M0,Mf ). Furthermore, Lk(N,M0,Mf ) ⊆ L(N,M0,Mf ) and therefore the equality
Lk(N,M0,Mf )↑ = L(N,M0,Mf )↑ holds. Now we can use the following lemma to construct
a finite automaton whose size is O(22poly(|n|)) and that accepts Lk(N,M0,Mf ). Without an
increase in size, this automaton can be modified to accept Lk(N,M0,Mf )↑ .

I Lemma 2. Consider N , M0, and Mf . For every k ∈ N, we can construct an FSA of size
O((k + 2)poly(n)) that accepts Lk(N,M0,Mf ), where n = |N |+ |M0|+ |Mf |.

It remains to show that every minimal word results from a computation of length at most
doubly exponential in the size of the input. This is the following proposition.

I Proposition 3. For every computation M0[σ〉M ≥ Mf , there is M0[σ′〉M ′ ≥ Mf with
λ(σ′)� λ(σ) and |σ′| ≤ 22cn log n , where c is a constant.

Our proof is an adaptation of Rackoff’s technique to show that coverability can be solved
in EXPSPACE [35]. Rackoff derives a bound (similar to ours) on the length of the shortest
computations that cover a given marking. Rackoff’s proof has been generalized to different
settings, e.g. to BVAS in [12]. Lemma 5.3 in [28] claims that Rackoff’s original proof already
implies Proposition 3. This is not true as we provide a counterexample in the full version of
this paper [7]. To handle labeled Petri nets, his proof needs two amendments. First, it is
not sufficient to consider the shortest covering computations. Instead, we have to consider
computations long enough to generate all minimal words. Second, Rackoff’s proof splits a
firing sequence into two parts and replaces the second part by a shorter one. In our case, we
need that the shorter word is a subword of the original one.

We now elaborate on Rackoff’s proof strategy and give the required definitions, then we
explain in more detail our adaptation, and finally give the technical details.

We assume that the places are ordered, i.e. P = [1..`]. Rackoff’s idea is to relax the
definition of the firing relation and allow for negative token counts on the last i + 1 to
` places. With a recurrence over the number of places, he then obtains a bound on the
length of the computations that keep the first i places positive. Formally, an unrestricted
marking of N is a function M : P → Z. An unrestricted marking M i-enables a transition
t ∈ T if M(j) ≥ F (j, t) for all j ∈ [1..i]. Firing t yields a new unrestricted marking M ′,
denoted M [t〉iM ′, with M ′(p) = M(p) − F (p, t) + F (t, p) for all p ∈ P . A computation
π = M0[t1〉iM1 . . . [tm〉iMm is i-bounded with i ∈ [1..`] if for each markingMk with k ∈ [0..m]
and each place j ∈ [1..i], we have Mk(j) ≥ 0. We assume a fixed marking Mf to be
covered. The computation π is i-covering (wrt. Mf ) if Mm(j) ≥ Mf (j) for all j ∈ [1..i].
Given two computations π1 = M0[t1〉i · · · [tk〉iMk and π2 = M ′0[t′1〉i · · · [t′s〉iM ′s such that
Mk(j) = M ′0(j) for all j ∈ [1..i], we define their i-concatenation π1 ·iπ2 to be the computation
M0[t1〉i · · · [tk〉iMk[t′1〉iM ′′k+1 · · · [t′s〉iM ′′k+s.

Rackoff’s result provides a bound on the length of the shortest i-covering computations.
Since we have to generate all minimal words, we will specify precisely which computations to
consider (not only the shortest ones). Moreover, Rackoff’s bound holds independent of the
initial marking. This is needed, because the proof of the main lemma splits a firing sequence
into two parts and then considers the starting marking of the second part as the new initial
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marking. The sets we define in the following will depend on some unrestricted initial marking
M , but we then quantify over all possible markings to get rid of the dependency.

Let Paths(M, i) be the set of all paths of all i-covering and i-bounded computations
starting at M , i.e. Paths(M, i) = {σ ∈ T ∗ | π = M [σ〉iM ′, π is i-bounded and i-covering} .
Let Words(M, i) = {λ(σ) | σ ∈ Paths(M, i)} be the corresponding set of words, and let
Basis(M, i) = {w ∈Words(M, i) | w is�-minimal} be its minimal elements. The central
definitions is SPath(M, i), the set of shortest paths yielding the minimal words in Basis(M, i),

SPath(M, i) =
{
σ ∈ Paths(M, i)

∣∣∣∣ λ(σ) ∈ Basis(M, i),
@ σ′ ∈ Paths(M, i) : |σ′| < |σ|, λ(σ′) = λ(σ)

}
.

Define m(M, i) = max{|σ|+ 1 | σ ∈ SPath(M, i)} to be the length (+1) of the longest path
in SPath(M, i), or m(M, i) = 0 if SPath(M, i) is empty. Note that Basis(M, i) is finite and
therefore only finitely many different lengths occur for sequences in SPath, i.e. m(M, i) is
well-defined. To remove the dependency on M , define f(i) = max

{
m(M, i)

∣∣ M ∈ Z`
}
to

be the maximal length of an i-covering computation, where the maximum is taken over all
unrestricted initial markings. The well-definedness of f(i) is not clear yet and will be a
consequence of the next lemma. A bound on f(`) will give us a bound on the maximum
length of a computation accepting a minimal word from L(N,M0,Mf ). To derive the bound,
we prove that f(i+ 1) ≤ (2nf(i))i+1 + f(i) using Rackoff’s famous case distinction [35].

I Lemma 4. f(0) = 1 and f(i+ 1) ≤ (2nf(i))i+1 + f(i) for all i ∈ [0..`[.

Lower Bound. We present a family of Petri net languages for which the minimal finite
state automata representing the upward closure are of size doubly exponential in the size of
the input. We rely on a construction due to Lipton [29] that shows how to calculate in a
precise way (including zero tests) with values up to 22n in Petri nets.

I Lemma 5. For every number n ∈ N , we can construct a Petri net N(n) = ({a}, P, T, F, λ)
and markings M0,Mf of size polynomial in n such that L(N(n),M0,Mf ) =

{
a22n }

.

BPP Nets. We establish an exponential upper bound on the size of the finite automata
representing the upward closure of BPP net languages. Then, we present a family of BPP
net languages for which the minimal finite automata representing their upward closure are of
size at least exponential in the size of the input.

Upper Bound. Fix the BPP net N = (Σ, P, T, F, λ) and assume M0 and Mf to be the
initial and the final marking of interest. Let n = |N |+ |M0|+ |Mf |.

I Theorem 6. One can construct an FSA of size O(2poly(n)) for L(N,M0,Mf )↑ .

We will show that every minimal word results from a computation whose length is polynomially
dependent on the number of transitions and on the number of tokens in the final marking
(which may be exponential in the size of the input). Let k be a bound on the length of
the minimal computations. With the same argument as before and using Lemma 2, we can
construct a finite state automaton of size O(2poly(n)) that accepts Lk(N,M0,Mf )↑ .

I Proposition 7. Consider a BPP net N . For every computation M0[σ〉M ≥Mf there is
M0[σ′〉M ′ ≥Mf with λ(σ′)� λ(σ) and |σ′| ≤ tc(Mf )2|T |.
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The key to proving the lemma is to consider a structure that makes the concurrency among
transitions in the BPP computation of interest explicit. Phrased differently, we give a true
concurrency semantics (also called partial order semantics and similar to Mazurkiewicz traces)
to BPP computations. Since BPPs do not synchronize, the computation yields a forest where
different branches represent causally independent transitions. To obtain a subcomputation
that covers the final marking, we select from the forest a set of leaves that corresponds
exactly to the final marking. We then show that the number of transitions in the minimal
forest that generates the selected set of leaves is polynomial in the number of tokens in the
final marking and in the number of transitions.

Lower Bound. We present a family of BPP net languages for which the minimal finite state
automata representing the upward closure are exponential in the size of the input. The idea
is to rely on the final marking, which is encoded in binary and hence can require 2n tokens.

I Lemma 8. For all numbers n ∈ N, we can construct a BPP net N(n) = ({a}, P, T, F, λ)
and markings M0,Mf of size polynomial in n such that L(N(n),M0,Mf ) = {a2n} .

4 Downward Closures

We consider the problem of constructing a finite state automaton accepting the downward
closure of a Petri net and a BPP net language, respectively. The downward closure often
has the property of being a precise description of the system behavior, namely as soon as
asynchronous communication comes into play: If the components are not tightly coupled,
they may overlook commands of the partner and see precisely the downward closure of the
other’s computation. As a result, having a representation of the downward closure gives the
possibility to design exact or under-approximate verification algorithms.

Petri Nets. The downward closure of Petri net languages has been shown to be effectively
computable in [17]. The algorithm is based on the Karp-Miller tree [22], which can be of
non-primitive recursive size. We now present a family of Petri net languages that are already
downward closed and for which the minimal finite automata have to be of non-primitive
recursive size in the size of the input. Our result relies on a construction due to Mayr and
Meyer [32]. It gives a family of Petri nets whose computations all terminate but, upon
halting, may have produced Ackermann many tokens on a distinguished place.

I Lemma 9. For all n, x ∈ N, there is a Petri net N(n) = ({a}, P, T, F, λ) and markings
M

(x)
0 ,Mf of size polynomial in n+ x such that L(N(n),M (x)

0 ,Mf ) =
{
ak | k ≤ Ackern(x)

}
.

Our lower bound is an immediate consequence of this lemma.

I Theorem 10. There is a family of Petri net languages for which the minimal finite
automata representing the downward closure are of non-primitive recursive size.

This hardness result relies on a weak computation mechanism of very large numbers that
is unlikely to show up in practical examples. The SRE inclusion problem studied in the
following section can be understood as a refined analysis of the computation problem for
downward closures.

BPP Nets. We prove an exponential upper bound on the size of the finite automata
representing the downward closure of BPP languages. Then, we present a family of BPP
languages for which the minimal finite automata representing their downward closure are
exponential in the size of the input BPP nets.
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49:8 On the Upward/Downward Closures of Petri Nets

Upper Bound. Fix the BPP net N = (Σ, P, T, F, λ) and let M0 and Mf be the initial and
the final marking of interest. Let n = |N |+ |M0|+ |Mf |.

I Theorem 11. We can construct a finite automaton of size O(2poly(n)) for L(N,M0,Mf )↓ .

The key insight for simulating N by a finite automaton is the following: If during a firing
sequence a marking occurs that has more than c tokens (where c is specified below) in some
place p, then there has to be a pump, a subsequence of the firing sequence that can be
repeated to produce arbitrarily many tokens in p. The precise statement is this, where we
use m = max(F ) to refer to the maximal multiplicity of an edge.

I Lemma 12. Let M0[σ〉M such that for some place p ∈ P , we have M(p) > c with
c = tc(M0)(|P | ·m)(|T |+1) Then for each j ∈ N, there is M0[σj〉Mj such that (1) σ� σj,
(2) M ≤Mj, and (3) Mj(p) > j.

The automaton for L(N,M0,Mf )↓ is the state space of N with token values beyond c set
to ω. For every transition, we also have an ε-variant to obtain the downward closure. The
language of this automaton is the downward closure of the language of the given BPP net.

Lower Bound. Consider the family of BPP net languages from the Lemma 8:
L(N(n),M0,Mf ) = {a2n}, for all n ∈ N. Its downward closure is {ai | i ≤ 2n}. The
minimal finite state automata recognising the downward closure have at least 2n states.

5 SRE Inclusion in Downward Closure

The downward closure of a Petri net language is hard to compute. We therefore propose
to under-approximate it by an SRE as follows. Assumev we have a heuristic coming up
with a candidate SRE that is supposed to be an under-approximation in the sense that
its language is included in the downward closure of interest. The problem we study is the
algorithmic task of checking whether the inclusion indeed holds. If so, the SRE provides
reliable (must) information about the system’s behavior, behavior that is guaranteed to
occur. This information is useful for finding bugs.

SRE Inclusion in Downward Closure (SRED)
Given: A Petri net (N,M0,Mf ), an SRE sre.
Question: L(sre) ⊆ L(N,M0,Mf )↓?

Petri Nets.

I Theorem 13. SRED is EXPSPACE-complete for Petri nets.

Hardness is due to the hardness of coverability [29]. Indeed, marking Mf is coverable from
M0 in N iff L(N,M0,Mf ) 6= ∅ iff {ε} ⊆ L(N,M0,Mf ) ↓ . Note that {ε} = L(∅∗) and
therefore is a simple regular language.

For the upper bound, we take inspiration from a recent result of Zetzsche [42]. He has
shown that, for a large class of models, computing the downward closure is equivalent to
deciding an unboundedness problem. We use a variant of this problem that comes with
a complexity result. The simultaneous unboundedness problem for Petri nets (SUPPN) is,
given a Petri net N , an initial marking M0, and a subset X ⊆ P of places, decide whether
for each n ∈ N, there is a computation σn such that M0[σn〉Mσn with Mσn(p) ≥ n for all
places p ∈ X. In [11], Demri has shown that this problem is EXPSPACE-complete.
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I Theorem 14 ([11]). SUPPN is EXPSPACE-complete.

We turn to the reduction of the inclusion problem SRED to the unboundedness problem
SUPPN. Since SREs are choices among products, an inclusion L(sre) ⊆ L(N,M0,Mf )↓
holds iff L(p) ⊆ L(N,M0,Mf )↓ holds for all products p in sre. Since the Petri net language
is downward closed, we can further simplify the products by removing choices. Fix a total
ordering on the alphabet Σ. Such an ordering can be represented by a word wΣ. We define
the linearization operation that takes a product and returns a regular expression:

lin(a+ ε) = a lin(a) = a

lin(Γ∗) = (πΓ(wΣ))∗ lin(p1p2) = lin(p1)lin(p2) .

For example, if Σ = {a, b, c} and we take wΣ = abc, then p = (a+ c)∗(a+ ε)(b+ c)∗ is turned
into lin(p) = (ac)∗a(bc)∗. The discussion justifies the following lemma.

I Lemma 15. L(sre) ⊆ L(N,M0,Mf ) ↓ if and only if for all products p in sre we have
L(lin(p)) ⊆ L(N,M0,Mf )↓ .

We will reduce L(lin(p)) ⊆ L(N,M0,Mf ) ↓ to SUPPN. To this end, we first understand
lin(p) as a Petri net Nlin(p). We modify this Petri net by adding one place pΓ for each block
(πΓ(wΣ))∗ = ai . . . aj . Each transition that repeats or leaves the block is modified to generate
a token in pΓ. As a result, pΓ counts how often the word πΓ(wΣ) has been executed.

The second step is to define an appropriate product of Nlin(p) with the Petri net of
interest. Intuitively, the product synchronizes with the downward closure of N .

I Definition 16. Consider two Petri nets Ni = (Σ, Pi, Ti, Fi, λ), i = 1, 2, with P1 ∩ P2 = ∅
and T1 ∩ T2 = ∅. Their right-synchronized product N1 m N2 is the labeled Petri net
N1 m N2 = (Σ, P1 ·∪P2, T1 ·∪T, F, λ), where for the transitions t1 ∈ T1, λ and F remain
unchanged. The new transitions are T = {merge(t1, t2) | t1 ∈ T1, t2 ∈ T2, λ1(t1) = λ2(t2)}
with λ(merge(t1, t2)) = λ1(t1) = λ2(t2) and similarly F (pi,merge(t1, t2)) = Fi(pi, ti),
F (merge(t1, t2), pi) = Fi(ti, pi) for pi ∈ Pi, i = 1, 2.

As indicated by the name right-synchronized, the transitions of N1 can be fired without
synchronization, while the transitions of N2 can only be fired if a transition of N1 with the
same label is fired simultaneously.

Consider a Petri net N with initial marking M0. We compute the right-synchronized
product N ′ = N mNlin(p), take the initial marking M ′0 that coincides with M0 but puts a
token on the initial place of Nlin(p), and focus on the counting places X = {pΓ | (πΓ(wΣ))∗}
is a block in p. The following correspondence holds.

I Lemma 17. L(lin(p)) ⊆ L(N,M0,M∅)↓ if and only if the places in X are simultaneously
unbounded in N ′ from M ′0. Here M∅ is the zero marking, i.e. M∅(p) = 0 for all p.

The lemma does not yet involve the final marking Mf . We modify N ′ and X such that
simultaneous unboundedness implies L(lin(p)) ⊆ L(N,M0,Mf )↓ . The idea is to introduce a
new place pf that can become unbounded only after Mf has been covered. We furthermore
add a transition tf that consumes Mf (p) tokens from each place p of N and produces one
token in pf . We add another transition tpump that consumes one token in pf and creates
two tokens in pf . Call the resulting net N ′′. The new initial marking M ′′0 coincides with M ′0
and assigns no token to pf .

Note that we do not enforce that tf is only fired after all the rest of the computation has
taken place. We can rearrange the transitions in any valid firing sequence of N ′′ to obtain a
sequence of the shape σ.tf k.tpump

k′ , where σ contains neither tf nor tpump.
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I Lemma 18. L(lin(p)) ⊆ L(N,M0,Mf ) ↓ iff the places in X ∪ {pf} are simultaneously
unbounded in N ′′ from M ′′0 .

To conclude the proof of Theorem 13, it remains to argue that the generated instance for
SUPPN is polynomial in the input, i.e. in N , M0, Mf and p. The expression lin(p) is
certainly linear in p, and the net Nlin(p) is polynomial in lin(p). The blow-up caused by
the right-synchronized product is at most quadratic, and adding the transitions and the
places to deal with Mf is polynomial. The size of M ′′0 is polynomial in the size of M0 and p.
Altogether, the size of N ′′, X ∪ {pf}, and M ′′0 (which together form the generated instance
for SUPPN) is polynomial in the size of the original input.

BPP Nets. We show that the problem of deciding whether the language of an SRE is
included in the downward closure of a BPP net language is NP-complete.

I Theorem 19. SRED for BPP nets is NP-complete.

Hardness is by a reduction from SAT to BPP coverability, which in turn reduces to deciding
whether the language of an SRE is included in the downward closure of a BPP language.
For the reverse direction, we give a reduction to satisfiability of an existential formula in
Presburger arithmetic, the first-order theory of the natural numbers with addition, subtraction,
and order. An existential Presburger formula takes the form ∃x1 . . . ∃xn.ϕ where ϕ is a
quantifier-free formula. We shall also write positive Boolean combinations of existential
formulas. By an appropriate renaming of the quantified variables, any such formula can be
converted into an equivalent existential Presburger formula. We write ϕ(~x) to indicate that
(at most) the variables ~x = x1 . . . xk occur free in ϕ. Given a function M from ~x to N, the
meaning of M satisfies ϕ is as usual and we write M |= ϕ to denote this. We rely on the
following complexity result:

I Theorem 20 ([37]). Satisfiability in existential Presburger arithmetic is NP-complete.

Note that L(sre) ⊆ L(N,M0,Mf )↓ iff the inclusion holds for every product p in sre. Given
such a product, we construct a new BPP net N ′ and an existential Presburger formula ψ(P ′)
such that L(p) ⊆ L(N,M0,Mf )↓ iff there is a marking M ′ reachable in N ′ from a modified
initial marking M ′0 with M ′ |= ψ. This concludes the proof with the help of the following
characterization of reachability in BPP nets in terms of existential Presburger arithmetic.

I Theorem 21 ([41, 13]). Given a BPP net N = (Σ, P, T, F, λ) and an initial marking M0,
one can compute in polynomial time an existential Presburger formula Ψ(P ) so that for all
markings M : M |= Ψ(P ) if and only if M0[σ〉M for some σ ∈ T ∗.

Key to the construction of N ′ is a characterization of the computations that need to be
present in the BPP net for the inclusion L(p) ⊆ L(N,M0,Mf ) ↓ to hold. Wlog., in the
following we will assume that the product takes the shape

(a1 + ε)Σ∗1(a2 + ε) . . .Σ∗n−1(an + ε),

where Σ1, . . . ,Σn−1 ⊆ Σ and a1, . . . , an ∈ Σ. For this language to be included in
L(N,M0,Mf ) ↓ , the BPP should have a computation with parts σi containing ai and
parts ρi between the σi that contain all letters in Σi and that can be repeated. To formalize
the requirement, recall that we use wΣ for a total order on the alphabet and πΣi

(wΣ) for the
projection to Σi ⊆ Σ.

Moreover, we define M ≤c M ′, with c the constant defined in Lemma 12, if for all places
p ∈ P we have M ′(p) < c implies M(p) ≤M ′(p).
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I Definition 22. Let p be a product. The BPP net N together with the markings M0,Mf

admits a p-witness if there are markings M1,M
′
1, . . . ,Mn,M

′
n and computations σi, ρi that

satisfy Mi[σi〉M ′i for all i ∈ [1..n], M ′i [ρi〉Mi+1 for all i ∈ [1..n[, and moreover: (1) ai� λ(σi),
for all i ∈ [1..n], (2) πΣi(wΣ)� λ(ρi) andM ′i ≤c Mi+1, for all i ∈ [1..n−1], and (3)M1 = M0
and Mf ≤c M ′n.

In a p-witness, (1) enforces that the ai occur in the desired order, and the first part of (2)
requires that πΣi

(wΣ) occurs in between. The second part of (2) means that each ρi (and
thus πΣi

(wΣ)) can be repeated. Property (3) enforces that the computation still starts in
the initial marking and can be extended to cover the final marking.

The following proposition reduces the problem SRED for BPP nets to checking whether
the BPP admits a p-witness.

I Proposition 23. L(p) ⊆ L(N,M0,Mf ) ↓ holds iff (N,M0,Mf ) admits a p-witness.

We now reduce the problem of finding such a p-witness to finding in another BPP net
N ′ = (∅, P ′, T ′, F ′, λ′) a reachable marking that satisfies a Presburger formula ΨM0

Mf
(P ′).

The task is to identify 2n markings that are related by 2n− 1 computations as required by a
p-witness. The idea is to create 2n− 1 replicas of the BPP net and run them independently
to guess the corresponding computations σi resp. ρi. The Presburger formula ΨM0

Mf
will

check that the target marking reached with σi coincides with the initial marking for ρi, and
the target marking reached with ρi is the initial marking of σi+1. To this end, the net N ′
remembers the initial marking that each replica started from in a full copy (per replica) of
the set of places of the BPP net. Furthermore ΨM0

Mf
checks that each ρi can be repeated by

ensuring that the final marking in the corresponding replica is larger than the initial marking.
As initial marking for N ′, we consider the marking M∅ with M∅(p) = 0 for all p.

I Proposition 24. There are σ′ and M ′ so that M∅[σ′〉M ′ in N ′ and M ′ |= ΨM0
Mf

if and
only if (N,M0,Mf ) admits a p-witness.

6 SRE Inclusion in Upward Closure

Rather than computing the upward closure of a Petri net language we now check whether a
given SRE under-approximates it. Formally, the problem is defined as follows.

SRE Inclusion in Upward Closure (SREU)
Given: A Petri net (N,M0,Mf ), SRE sre.
Question: L(sre) ⊆ L(N,M0,Mf )↑?

I Theorem 25. SREU is EXPSPACE-complete for Petri nets.

The EXPSPACE lower bound is immediate by hardness of coverability for Petri nets [29].
The upper bound is due to the following fact: We only need to check whether the set of
minimal words in the language of the given SRE is included in the upward closure of the
Petri net language. Since the number of minimal words in the SRE language is less than the
size of the SRE, and since checking whether a word is included in the upward closure of the
language of the Petri net N can be reduced in polynomial time to coverability in Petri nets
(which is well-known to be in EXPSPACE [35]), we obtain our EXPSPACE upper bound.

I Theorem 26. SREU is NP-complete for BPP nets.
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The hardness is by a reduction of the coverability problem for BPP nets. For the upper bound,
the algorithm is similar to the one for checking the inclusion of an SRE in the downward
closure of a BPP language. Consider a product p of the given SRE. The inclusion L(p) ⊆
L(N,M0,Mf ) ↑ holds iff the minimal subwords min(p) = a1 . . . an belong to L(N,M0,Mf ) ↑.
Word a1 . . . an belongs to the upward closure iff one of its subwords is in L(N,M0,Mf ). We
reduce this check for an accepted subword to checking whether a reachable marking M in a
different net N ′ satisfies a Presburger formula Ψ.

7 Being Upward/Downward Closed

We now study the problem to decide whether a Petri net language actually is upward
or downward closed, i.e. whether the closure that we can compute is actually a precise
representation of the system’s behavior. Formally, the problem BUC is defined as follows:

Being upward closed (BUC)
Given: A Petri net (N,M0,Mf ).
Question: L(N,M0,Mf ) = L(N,M0,Mf )↑?

The problem of being downward closed (BDC) replaces ↑ by ↓ in the above definition.

I Theorem 27. BUC and BDC are decidable for Petri nets.

Note that L(N,M0,Mf ) ⊆ L(N,M0,Mf )↑ trivially holds. It remains to decide the converse.
First, we show how to decide L(A) ⊆ L(N,M0,Mf ) for any given FSA A. This regular
inclusion should be a problem of independent interest. Then, we can use the automaton
for the upward closure constructed by Theorem 1 (resp. the automaton for the downward
closure that can be constructed by [17]) to decide BUC (resp. BDC).

We rely on a result of Esparza et. al [21] that involves the traces of an FSA (resp. Petri net),
labelings of computations that start from the initial state (resp. initial marking), regardless
of whether they end in a final state (resp. covering marking). For a finite automaton A ,
we define T (A) =

{
w ∈ Σ∗ | qinit

w→ q for some q ∈ Q
}
. Similarly, for a Petri net, we define

T (N,M0) = {w ∈ Σ∗ | ∃σ ∈ T ∗ : λ(σ) = w,M0[σ〉M for some marking M} .

I Theorem 28 ([21]). The inclusion T (A) ⊆ T (N,M0) is decidable.

The algorithm constructs a computation tree of A and N . This tree determinizes N in that
it tracks sets of incomparable markings reachable with the same trace. The construction
terminates if either the set of markings becomes empty and the inclusion fails or (the
automaton deadlocks or) we find a set of markings that covers a predecessor and the inclusion
holds. The latter is guaranteed to happen due to the well-quasi ordering (wqo) of sets of
markings. This dependence on wqos does not allow us to derive a complexity result.

We now show how to reduce checking the inclusion L(A) ⊆ L(N,M0,Mf ) to deciding
an inclusion among trace languages. Theorem 28 can be used to decide this inclusion. Let
(N,M0,Mf ) be the Petri net of interest together with its initial and final marking, and let
A be the given FSA. As language L(N,M0,Mf ) is not prefix-closed in general, we consider
the zero marking M∅ as the new final marking. This yields a prefix-closed language with
T (N,M0) = L(N,M0,M∅), since now all valid firing sequences give a word in the language,
and prefixes of valid firing sequences are again valid firing sequences. We still need to take
the original final marking Mf into account. To do so, we modify the net by adding a new
transition that can only be fired after Mf has been covered.
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Let a 6∈ Σ be a fresh letter. Let N.a be the Petri net that is obtained from N and the
given final marking Mf by adding a new transition tfinal that consumes Mf (p) many tokens
from every place p of N and that is labeled by a. For the automaton, we use a similar
trick. Let A.a be an automaton for L(A).a that is reduced so that the unique final state is
reachable from every state.

I Lemma 29. L(A) ⊆ L(N,M0,Mf ) holds iff T (A.a) ⊆ T (N.a,M0) holds.

The second inclusion is decidable using Theorem 28. This yields the desired result.

I Theorem 30. L(A) ⊆ L(N,M0,Mf ) is decidable.
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