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Abstract

We study the size and the complexity of computing finite state automata (FSA) representing and

approximating the downward and the upward closure of Petri net languages with coverability as

the acceptance condition. We show how to construct an FSA recognizing the upward closure

of a Petri net language in doubly-exponential time, and therefore the size is at most doubly

exponential. For downward closures, we prove that the size of the minimal automata can be

non-primitive recursive. In the case of BPP nets, a well-known subclass of Petri nets, we show

that an FSA accepting the downward/upward closure can be constructed in exponential time.

Furthermore, we consider the problem of checking whether a simple regular language is included

in the downward/upward closure of a Petri net/BPP net language. We show that this problem

is EXPSPACE-complete (resp. NP-complete) in the case of Petri nets (resp. BPP nets). Finally,

we show that it is decidable whether a Petri net language is upward/downward closed. To this

end, we prove that one can decide whether a given regular language is a subset of a Petri net

coverability language.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Petri nets, BPP nets, downward closure, upward closure

1 Introduction

Petri nets are a popular model of concurrent systems [19]. Petri net languages (with different

acceptance conditions) have been extensively studied during the last years, including decid-

ing their emptiness (which can be reduced to reachability) [36, 28, 30, 31], their regularity

[44, 14], their context-freeness [43, 32], and many other decision problems (e.g. [22, 2, 20]).

In this paper, we consider the class of Petri net languages with coverability as the acceptance

condition (i.e. the set of sequences of transition labels occurring in a computation reaching

a marking greater than or equal to a given final marking).

We address the problem of computing the downward and the upward closure of Petri

net languages. The downward closure of a language L, denoted by L ↓, is the set of all

subwords, all words that can be obtained from words in L by deleting letters. The upward

closure of L, denoted by L ↑, is the set of all superwords, all words that can be obtained

∗ The conference version of this paper has been published in the proceedings of the 42nd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2017 [8].

† A part of this work was carried out when the author was at Aalto University.
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2 On the Upward/Downward Closures of Petri Nets

from words in L by inserting letters. It is well-known that, for any language, the downward

and upward closure are regular and can be described by a simple regular expression (SRE).

However, such an expression is in general not computable, e.g. for example, it is not possible

to compute the downward closure of languages recognized by lossy channel systems [38].

In this paper, we first consider the problem of constructing a finite state automaton (FSA)

accepting the upward/downward closure of a Petri net language. We give an algorithm that

computes an FSA of doubly-exponential size for the upward closure in doubly-exponential

time. This is done by showing that every minimal word results from a computation of

length at most doubly exponential in the size of the input. Our algorithm is also optimal

since we present a family of Petri net languages for which the minimal finite state automata

representing their upward closure are of doubly-exponential size.

Our second contribution is a family of Petri net languages for which the size of the mini-

mal finite state automata representing the downward closure is non-primitive recursive. To

prove this, we resort to a construction due to Mayr and Meyer [37]. It gives a family of Petri

nets whose language, albeit finite, is astronomically large: It contains Ackermann many

words. The downward closure of Petri net languages has been shown to be effectively com-

putable [22]. The algorithm is based on the Karp-Miller tree [27], which has non-primitive

recursive complexity.

Furthermore, we consider the SRE inclusion problem which asks whether the language

of a simple regular expression is included in the downward/upward closure of a Petri net

language. The idea behind SRE inclusion is to stratify the problem of computing the

downward/upward closure: Rather than having an algorithm computing all information

about the language, we imagine to have an oracle (e.g. an enumeration) making proposals

for SREs that could be included in the downward/upward closure. The task of the algorithm

is merely to check whether a proposed inclusion holds. We show that this problem is

EXPSPACE-complete in both cases. In the case of upward closures, we prove that SRE

inclusion boils down to checking whether the set of minimal words of the given SRE is

included in the upward closure. In the case of downward closures, we reduce the problem to

the simultaneous unboundedness problem for Petri nets, which is EXPSPACE-complete [14].

We also study the problem of checking whether a Petri net language actually is upward

or downward closed. This is interesting as it means that an automaton for the closure,

which we can compute with the aforementioned methods, is a precise representation of the

system’s behavior. We show that the problem of being upward/downward closed is decidable

for Petri nets. The result is a consequence of a more general decidability that we believe is

of independent interest. We show that checking whether a regular language is included in

a Petri net language (with coverability as the acceptance condition) is decidable. Here, we

rely on a decision procedure for trace inclusion due to Esparza et al. [26].

Finally, we consider BPP 1 nets [16], a subclass of Petri nets defined by a syntactic

restriction: Every transition is allowed to consume at most one token in total. We show

that we can compute finite state automata accepting the upward and the downward closure

of a BPP net language in exponential time. The size of the FSA is also exponential. Our

algorithms are optimal as we present a family of BPP net languages for which the minimal

FSA representing their upward/downward closure have exponential size. Furthermore, we

consider the SRE inclusion problem. We show that, in the case of BPP nets, it is NP-

complete for both, inclusion in the upward and in the downward closure. To prove the

upper bound, we reduce to the satisfiability problem for existential Presburger arithmetic

1 BPP stands for basic parallel processes, a notion from process algebra.
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(which is known to be NP-complete [42]). The hardness is by a reduction from SAT to the

emptiness of BPP net languages, which in turn reduces to SRE inclusion.

The following table summarizes our results.

Petri nets BPP nets

Computing the upward closure Doubly exponential∗ Exponential∗

Computing the downward closure Non-primitive recursive∗ Exponential∗

SRE in downward closure EXPSPACE-complete NP-complete

SRE in upward closure EXPSPACE-complete NP-complete

Being downward/upward closed Decidable

Containing regular language Decidable

∗ : Time for the construction and size of the resulting FSA, optimal.

Related Work

Several constructions have been proposed in the literature to compute finite state automata

recognizing the downward/upward closure. In the case of Petri net languages (with various

acceptance conditions including reachability), it has been shown that the downward closure

is effectively computable [22]. With the results in this paper, the computation and the state

complexity have to be non-primitive recursive. For the languages generated by context-free

grammars, effective computability of the downward closure is due to [45, 21, 11, 9]. For

the languages recognized by one-counter automata, a strict subclass of the context-free lan-

guages, it has been shown how to compute in polynomial time a finite state automaton

accepting the downward/upward closure of the language [7]. The effective computability of

the downward closure has also been shown for stacked counter automata [48]. In [47], Zet-

zsche provides a characterization for a class of languages to have an effectively computable

downward closure. It has been used to prove the effective computability of downward clo-

sures of higher-order pushdown automata and higher-order recursion schemes [23, 10]. The

downward closure of the languages of lossy channel systems is not computable [38].

The computability results discussed above have been used to prove the decidability of

verification problems and to develop approximation-based program analysis methods (see

e.g. [6, 5, 4, 29, 35, 49]). Throughout the paper, we will give hints to applications in

verification.

2 Preliminaries

In this section, we fix some basic definitions and notations that will be used throughout the

paper. For every i, j ∈ N, we use [i..j] to denote the set {k ∈ N | i 6 k 6 j}.

Languages and Closures

Let Σ be a finite alphabet. We use Σε to denote Σ ∪ {ε}. The length of a word u over Σ

is denoted by |u|, where |ε| = 0. Let k ∈ N be a natural number, we use Σk (resp. Σ6k) to

denote the set of all words of length equal (resp. smaller or equal) to k. A language L over

Σ is a (possibly infinite) set of finite words over Σ.
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Let Γ be a subset of Σ. Given a word u ∈ Σ∗, we denote by πΓ(u) the projection of u

over Γ, i.e. the word obtained from u by erasing all the letters that are not in Γ.

The Parikh image of a word [39] counts the number of occurrences of all letters while

forgetting about their positioning. Formally, the function Ψ : Σ∗ 7→ NΣ takes a word w ∈ Σ∗

and gives the function Ψ(w) : Σ → N defined by (Ψ(w))(a) =
∣
∣π{a}(w)

∣
∣ for all a ∈ Σ.

The subword relation � ⊆ Σ∗ × Σ∗ [25] between words is defined as follows: A word

u = a1 . . . an is a subword of v, denoted u� v, if u can be obtained by deleting letters from

v or, equivalently, if v = v0a1v1 . . . anvn for some v0, . . . , vn ∈ Σ∗.

Let L be a language over Σ. The upward closure of L consists of all words that have a

subword in the language, L ↑= {v ∈ Σ∗ | ∃u ∈ L : u� v}. The downward closure of L con-

tains all words that are dominated by a word in the language, L↓= {u ∈ Σ∗ | ∃v ∈ L : u� v}.

Higman showed that the subword relation is a well-quasi ordering [25], which means that

every set of words L ⊆ Σ∗ has a finite basis, a finite set of minimal elements v ∈ L such that

∄u ∈ L : u 6= v, u� v. With finite bases, L↑ and L↓ are guaranteed to be regular for every

language L ⊆ Σ∗ [24]. Indeed, they can be expressed using the subclass of simple regular

languages defined by so-called simple regular expressions [1].

These SREs are choices among products p that interleave single letters a or (a+ ε) with

iterations over letters from subsets Γ ⊆ Σ of the alphabet:

sre ::= p p sre + sre p ::= a p (a+ ε) p Γ∗ p p.p .

Note that this is an extension of the classical definition that we introduce so that we can

also represent upward closures. The syntactic size of an SRE sre is denoted by |sre| and

defined as expected, every piece of syntax contributes to it.

Finite State Automata

A finite state automaton (FSA) A is a tuple (Σ, Q,→, qinit , Qf ) where Q is a finite non-

empty set of states, Σ is the finite input alphabet, → ⊆ Q× Σε ×Q is the non-deterministic

transition relation, qinit ∈ Q is the initial state, and Qf ⊆ Q is the set of final states. We

represent a transition (q, a, q′) ∈ → by q
a
−→ q′ and generalize the relation to words in the

expected way. The language of finite words accepted by A is denoted by L(A). The size of

A, denoted |A|, is defined by |Q| + |Σ|. An FSA is minimal for its language L(A) if there is

no FSA B with L(A) = L(B) with a strictly smaller number of states.

Petri Nets

A (labeled) Petri net is a tuple N = (Σ, P, T, F, λ) [41]. Here, Σ is a finite alphabet, P a finite

set of places, T a finite set of transitions with P ∩T = ∅, F : (P × T ) ∪ (T × P ) → N a flow

function, and λ : T 7→ Σε a labeling function. When convenient, we will assume that the

places are ordered, P = [1..ℓ] for some ℓ ∈ N. For a place or transition x ∈ P ∪ T , we define

the preset to consist of the elements that have an arc to x, •x = {y ∈ P ∪ T | F (y, x) > 0}.

The postset is defined similarly, x• = {y ∈ P ∪ T | F (x, y) > 0}.

To define the semantics of Petri nets, we use markings M : P → N that assign to

each place a number of tokens. A marking M enables a transition t, denoted M [t〉, if

M(p) > F (p, t) for all p ∈ P . A transition t that is enabled may be fired, leading to the

new marking M ′ defined by M ′(p) = M(p) − F (p, t) + F (t, p) for all p ∈ P , i.e. t consumes

F (p, t) tokens and produces F (t, p) tokens in p. We write the firing relation as M [t〉M ′. A

computation π = M0[t1〉M1 · · · [tm〉Mm consists of markings and transitions. We extend the

firing relation to transition sequences σ ∈ T ∗ in the straightforward manner and also write
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π = M0[σ〉Mm. A marking M is reachable from an initial marking M0 if M0[σ〉M for some

σ ∈ T ∗. A marking M covers another marking Mf , denoted M >Mf , if M(p) >Mf(p) for

all p ∈ P . A marking Mf is coverable from M0 if there is a marking M reachable from M0

that covers Mf , M0[σ〉M >Mf for some σ ∈ T ∗.

A Petri net instance (N,M0,Mf) consists of a Petri net N together with an initial

marking M0 and final marking Mf for N . Given a Petri net instance (N,M0,Mf), the

associated covering language is

L(N,M0,Mf) = {λ(σ) | σ ∈ T ∗, M0[σ〉M >Mf} ,

where the labeling function λ is extended to sequences of transitions in the straightforward

manner. Given a natural number k ∈ N, we define

Lk(N,M0,Mf) =
{
λ(σ)

∣
∣ σ ∈ T6k, M0[σ〉M >Mf

}

to be the set of words accepted by computations of length at most k.

Let max(F ) denote the maximum of the range of F . The size of the Petri net N is

|N | = |Σ| + |P | · |T | · (1 + ⌈log2(1 + max(F ))⌉) ,

Similarly, the size of a marking M is

|M | = |P | · (1 + ⌈log2(1 + max(M))⌉) ,

where max(M) denotes the maximum of the range of M . The size of a Petri net instance

(N,M0,Mf ) is |(N,M0,Mf )| = |N | + |M0| + |Mf |. This means we consider the the binary

encoding of numbers occurring in markings and the flow function. In contrast, we define

the token count tc(M) = Σp∈PM(p) of a marking M to be the sum of all tokens assigned

by M , i.e. the size of the unary encoding of M .

A Petri net N is said to be a BPP net (or communication-free) if every transition

consumes at most one token from one place (i.e. Σp∈PF (p, t) 6 1 for every t ∈ T ).

3 Upward Closures

We consider the problem of constructing a finite state automaton accepting the upward

closure of a Petri net and a BPP net language, respectively. The upward closure offers an

over-approximation of the system behavior that is useful for verification purposes [35].

Computing the upward closure

Given: A Petri net instance (N,M0,Mf).

Compute: An FSA A with L(A) = L(N,M0,Mf )↑.

3.1 Petri Nets

We prove a doubly-exponential upper bound on the size of the finite state automaton rep-

resenting the upward closure of a Petri net language. Then, we present a family of Petri

net languages for which the minimal finite state automata representing their upward closure

have a size doubly exponential in the size of the input.
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Upper Bound

Fix the Petri net instance (N,M0,Mf ) of interest and let n be its size.

◮ Theorem 1. One can construct an FSA of size O
(

22poly(n)
)

for L(N,M0,Mf)↑.

The remainder of the section is devoted to proving the theorem. We will show that ev-

ery minimal word results from a computation of length at most O(22poly(n)

). Let us call

such computations the minimal ones. Let k be a bound on the length of the minimal

computations. This means the language Lk(N,M0,Mf) contains all minimal words of

L(N,M0,Mf). Furthermore, Lk(N,M0,Mf ) ⊆ L(N,M0,Mf ) and therefore the equality

Lk(N,M0,Mf)↑= L(N,M0,Mf )↑ holds. Now we can use the following lemma to construct

a finite automaton whose size is O
(

22poly(|n|)
)

and that accepts Lk(N,M0,Mf). Without an

increase in size, this automaton can be modified to accept Lk(N,M0,Mf ) ↑: Add for each

state q and for each symbol a ∈ Σ a loop q
a
−→ q.

◮ Lemma 2. For every k ∈ N, one can construct an FSA of size O
(
(k + 2)poly(n)

)
that

accepts Lk(N,M0,Mf).

Proof. If there is a word w ∈ Lk(N,M0,Mf ), then there is a run of the form M0[σ〉M ′ with

M ′ > Mf and |σ| 6 k. Any place p can have at most M0(p) + k · 2n tokens in M ′. Note

that M0(p) 6 2n. With this observation, we construct the required finite state automaton

A = (Σ, Q,→, qinit , Qf) as follows.

The set of states is Q = (P → [0..(k + 1) · 2n]) × [0..k]. The first component stores

the token count for each place p ∈ [1..ℓ] (i.e. a marking), the second component counts the

number of steps that have been executed so far. For each transition t ∈ T of the Petri net

and each state (M, i) with M(p) > F (p, t) for all p and i < k, there is a transition from (M, i)

to (M ′, i+ 1) in →, where M [t〉M ′. It is labeled by λ(t). The initial state is qinit = (M0, 0),

and a state (M ′, i) is final if M ′ covers Mf . By the construction of the automaton, it is

clear that (M0, 0)
w
−→ (M ′, j) with (M ′, j) final iff there is a σ ∈ T6k such that M0[σ〉M ′

with M ′ >Mf . Hence we have L(A) = Lk(N,M0,Mf ). We estimate the size of Q by

|Q| = |(P → [0..(k + 1) · 2n])| · |[0..k]|

= ((k + 1) · 2n)ℓ · (k + 1) 6 ((k + 1) · 2n)n · (k + 1) = (k + 1)n+1 · 2n2

6 (k + 2)n+1 · (k + 2)n2

6 (k + 2)n+1+n2

∈ O
(

(k + 2)poly(n)
)

.

Since we can assume |Σ| 6 n, we have that |A| = |Q| + |Σ| is in O
(
(k + 2)poly(n)

)
. ◭

It remains to show that every minimal word results from a computation of length at most

doubly exponential in the size of the input. This is the following proposition.

◮ Proposition 3. For every computation M0[σ〉M > Mf , there is M0[σ′〉M ′ > Mf with

λ(σ′)� λ(σ) and |σ′| 6 22cn log n

, where c is a constant.

Our proof is an adaptation of Rackoff’s technique to show that coverability can be solved

in EXPSPACE [40]. Rackoff derives a bound (similar to ours) on the length of the shortest

computations that cover a given marking. Rackoff’s proof has been generalized to different

settings, e.g. to BVAS in [15]. Lemma 5.3 in [33] claims that Rackoff’s original proof already

implies Proposition 3. This is not true as shown by the following example.
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run

temp

stop

ta

tc

tb

Figure 1. The flow relation of the Petri net Nce.

◮ Example 4. Consider the Petri net Nce = ({a, b, c}, {run, temp, stop}, {ta, tb, tc}, F, λ),

where the flow relation is given by Figure 1 and we have λ(ta) = a, λ(tb) = b, and λ(tc) = c.

Consider the initial marking M0 = (1, 0, 0) with one token on run and no token else-

where, and the final marking Mf = (0, 0, 1) that requires one token on stop. We have

L(N,M0,Mf ) = a+b ∪ a∗c and thus L(N,M0,Mf)↑ = Σ∗aΣ∗bΣ∗ ∪ Σ∗cΣ∗.

We may compute Rackoff’s bound [40], and obtain that if there is a computation covering

Mf from M0, then there is one consisting of at most one transition. Indeed, the computation

M0[tc〉Mf is covering.

However, computations whose length is within Rackoff’s upper bound do not necessarily

generate all minimal words: We have that ab is a minimal word in L(N,M0,Mf ) ↑, but

the shortest covering computation that generates ab is M0[ta〉(1, 1, 0)[tb〉Mf , consisting of 3

markings and 2 transitions.

To handle labeled Petri nets, Rackoff’s proof needs two amendments. First, it is not sufficient

to consider the shortest covering computations. Instead, we have to consider computations

long enough to generate all minimal words. Second, Rackoff’s proof splits a firing sequence

into two parts and replaces the second part by a shorter one. In our case, we need that the

shorter word is a subword of the original one.

We now elaborate on Rackoff’s proof strategy and give the required definitions, then we

explain in more detail our adaptation, and finally give the technical details.

We assume that the places are ordered, i.e. P = [1..ℓ]. Rackoff’s idea is to relax the

definition of the firing relation and allow for negative token counts on the last i + 1 to ℓ

places. With a recurrence over the number of places, he then obtains a bound on the length

of the computations that keep the first i places positive.

Formally, an pseudo-marking of N is a function M : P → Z. For i ∈ [1..ℓ], a pseudo-

marking marking M i-enables a transition t ∈ T if M(j) > F (j, t) for all j ∈ [1..i]. Firing t

yields a new pseudo-markingM ′, denotedM [t〉iM
′, with M ′(p) = M(p)−F (p, t)+F (t, p) for

all p ∈ P . A computation π = M0[t1〉iM1 . . . [tm〉iMm is i-non-negative if for each marking

Mk with k ∈ [0..m] and each place j ∈ [1..i], we have Mk(j) > 0. We assume a fixed marking

Mf to be covered. The computation π is i-covering (wrt. Mf) if Mm(j) > Mf (j) for all

j ∈ [1..i]. Given two computations π1 = M0[t1〉i · · · [tk〉iMk and π2 = M ′
0[t′1〉i · · · [t′s〉iM

′
s

such that Mk(j) = M ′
0(j) for all j ∈ [1..i], we define their i-concatenation π1 ·i π2 to be the

computation M0[t1〉i · · · [tk〉iMk[t′1〉iM
′′
k+1 · · · [t′s〉iM

′′
k+s.

Rackoff’s result provides a bound on the length of the shortest i-covering computations.

Since we have to generate all minimal words, we will specify precisely which computations to

consider (not only the shortest ones). Moreover, Rackoff’s bound holds independent of the

initial marking. This is needed, because the proof of the main lemma splits a firing sequence

into two parts and then considers the starting marking of the second part as the new initial
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marking. The sets we define in the following will depend on some unrestricted initial marking

M , but we then quantify over all possible markings to get rid of the dependency.

Let Paths(M, i) be the set of all i-non-negative and i-bounded computations from M ,

Paths(M, i) = {σ ∈ T ∗ | π = M [σ〉iM
′, π is i-non-negative and i-covering} .

Let Words(M, i) = {λ(σ) | σ ∈ Paths(M, i)} be the corresponding set of words, and let

Basis(M, i) = {w ∈ Words(M, i) | w is �-minimal} be its minimal elements. The central def-

initions is SPath(M, i), the set of shortest paths yielding the minimal words in Basis(M, i),

SPath(M, i) =

{

σ ∈ Paths(M, i)

∣
∣
∣
∣

λ(σ) ∈ Basis(M, i),

∄ σ′ ∈ Paths(M, i) : |σ′| < |σ|, λ(σ′) = λ(σ)

}

.

Define m(M, i) = max{|σ| + 1 | σ ∈ SPath(M, i)} to be the length (+1) of the longest path

in SPath(M, i), or m(M, i) = 0 if SPath(M, i) is empty. Note that Basis(M, i) is finite and

therefore only finitely many different lengths occur for sequences in SPath, i.e. m(M, i) is

well-defined. To remove the dependency on M , define

f(i) = max{m(M, i) | M : P → Z}

to be the maximal length of an i-covering computation, where the maximum is taken over

all unrestricted initial markings. The well-definedness of f(i) is not clear yet and will be a

consequence of the next lemma. A bound on f(ℓ) will give us a bound on the maximum

length of a computation accepting a minimal word from L(N,M0,Mf). To derive the bound,

we prove that f(i+ 1) 6 (2nf(i))i+1 + f(i) using Rackoff’s famous case distinction [40].

◮ Lemma 5. f(0) = 1 and f(i+ 1) 6 (2nf(i))i+1 + f(i) for all i ∈ [1..ℓ− 1].

Proof. To see that f(0) = 1, note that ε ∈ Basis(M, 0) for any M ∈ Zℓ, and the empty

firing sequence is a 0-covering sequence producing ε.

For the second claim, we show that for any M ∈ Zℓ and any w ∈ Words(M, i+1), we can

find σ ∈ Paths(M, i+ 1) with |σ| < (2nf(i))i+1+f(i) and λ(σ)� w. Let σ′ ∈ Paths(M, i+1)

be a shortest firing sequence of transitions such that λ(σ′) = w. If |σ′| < (2nf(i))i+1 + f(i),

we have nothing to do. Assume now |σ′| > (2nf(i))i+1 + f(i). We distinguish two cases.

1st Case: Suppose σ′ induces the (i + 1)-non-negative, (i+ 1)-covering computation π′, in

which for each occurring marking M and for each place p ∈ [1..i+ 1], M(p) < 2n ·f(i) holds.

We extract from π′ an (i + 1)-non-negative, (i + 1)-covering computation π where no two

markings agree on the first (i+1) places: Whenever such a repetition occurs in π′, we delete

the transitions between the repeating markings to obtain a shorter computation that is still

(i+ 1)-covering. Iterating the deletion yields the sequence of transition σ. The computation

σ satisfies

|σ| < (2nf(i))i+1
6 (2nf(i))i+1 + f(i) .

The strict inequality holds as a computation of h markings has (h−1) transitions. Moreover,

σ is a subword of the original σ′, and hence λ(σ)� λ(σ′) = w.

2nd Case: Otherwise, σ′ is the path of an (i+1)-non-negative, (i+1)-covering computation π′,

in which a marking occurs that assigns more than 2n ·f(i) tokens to some place p ∈ [1..i+1].

Then, we can decompose π′ as follows:

π′ = M [σ′
1〉i+1M1[t〉i+1M2[σ′

2〉i+1M
′



M. F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 9

so that M2 is the first marking that assigns 2n · f(i) or more tokens to some place, say

wlog. place i+ 1. We may assume that |σ′
1| < (2nf(i))i+1. Otherwise, we can replace σ′

1 by

a repetition-free sequence σ1 as in the first case, where M0[σ1〉i+1M
′
1 such that M ′

1 and M1

agree on the first i+ 1 places.

Note that π′
2 = M2[σ′

2〉i+1M
′ is also an i-non-negative, i-covering computation. By the

definition of f(i), there is an i-non-negative, i-covering computation π2 starting from M2

such that the corresponding path σ2 satisfies |σ2| < f(i) and λ(σ2)� λ(σ′
2). Since the value

of place i+1 is greater or equal 2nf(i), it is easy to see that π2 is also an (i+1)-non-negative,

(i + 1)-covering computation starting in M2: Even if all the at most f(i) − 1 transitions

subtract 2n tokens from place i + 1, we still end up with 2n tokens. The concatenation

σ′
1 ·i t ·i σ

′
2 is then an (i + 1)-non-negative, (i + 1)-covering run starting in M of length at

most ((2nf(i))i+1 − 1) + 1 + (f(i) − 1) < (2nf(i))i+1 + f(i). ◭

Proof of Proposition 3. As in [40], we define the function g inductively by g(0) = 23n and

g(i+1) = (g(i))3n. It is easy to see that g(i) = 2((3n)(i+1)). Using Lemma 5, we can conclude

f(i) 6 g(i) for all i ∈ [0..ℓ]. Furthermore,

f(ℓ) 6 g(ℓ) 6 2((3n)(ℓ+1))
6 2((3n)n+1)

6 22cn log n

for some suitable constant c.

Let M0[σ〉M > Mf be a covering computation of the Petri net. By the definitions,

σ ∈ Paths(M0, ℓ) and λ(σ) ∈ Words(M0, ℓ). There is a word w ∈ Basis(M0, ℓ) with w� λ(σ),

and w has a corresponding computation σ′ ∈ SPath(M0, ℓ) (i.e. λ(σ′) = w). By the definition

of f(ℓ), we have |σ′| < m(M0, ℓ) 6 f(ℓ) 6 22cn log n

. ◭

Lower Bound

We present a family of Petri net languages for which the minimal finite state automata

representing the upward closure are of size doubly exponential in the size of the input. We

rely on a construction due to Lipton [34] that shows how to calculate in a precise way

(including zero tests) with values up to 22n

in Petri nets.

◮ Lemma 6. For every number n ∈ N , we can construct a Petri net N(n) = ({a}, P, T, F, λ)

and markings M0,Mf of size polynomial in n such that L(N(n),M0,Mf ) =
{
a22n }

.

Proof. We rely on Lipton’s proof [34] of EXPSPACE-hardness of Petri net reachability. Lip-

ton shows how a counter machines in which the counters are bounded by 22n

can be simulated

using a Petri net of polynomial size. We will use the notations as in [17].

Lipton defines net programs (called parallel programs in [34]) to encode Petri nets. For

the purpose of proving this lemma, we will recall the syntax of net programs and also some

of the subroutines as defined in [34, 17].

We will use the following commands resp. the following established subroutines from [17]

in the program.

l : x := x− 1 decrement a variable x

l : gosub s call the subroutine s

l : Incn(x) sets variable x to exactly 22n

l : Test(x, l=0, l 6=0) jumps to l=0 if x = 0 and to l 6=0 if x 6= 0

Note that all commands can be encoded using a Petri net of size polynomial in n. The fact

that a test for zero can be implemented (by the subroutine Test(x, l=0, l 6=0)) relies on the
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counters being bounded by 22n

. It is not possible to encode zero tests for counter machines

with unbounded counters using Petri nets.

We assume that in the Petri net encoded by these commands, all transitions are labeled

by ε. We consider an additional command Action(a) to accept the input a, which can be

encoded using a set of transitions such that exactly one of them is labeled by a.

Consider the following net program.
l1 : gosub Incn(x)

l2 : x := x− 1

l3 : Action(a)

l4 : gosub Test(x, l5, l2)

l5 : Halt

In any halting computation, the program performs Action(a) exactly 22n

times. The re-

quired Petri net N(n) is the one equivalent to this net program. ◭

The upward closure L(N(n),M0,Mf)↑ is
{
ak

∣
∣ k > 22n}

and needs at least 22n

states.

3.2 BPP Nets

We establish an exponential upper bound on the size of the finite automata representing

the upward closure of BPP net languages. Then, we present a family of BPP net languages

for which the minimal finite automata representing their upward closure are of size at least

exponential in the size of the input.

Upper Bound

Assume that the net N in the Petri net instance (N,M0,Mf ) of size n is a BPP net.

◮ Theorem 7. One can construct an FSA of size O(2poly(n)) for L(N,M0,Mf )↑.

We will show that every minimal word results from a computation whose length is poly-

nomially dependent on the number of transitions and on the number of tokens in the final

marking (which may be exponential in the size of the input). Let k be a bound on the length

of the minimal computations. With the same argument as before and using Lemma 2, we

can construct a finite state automaton of size O(2poly(n)) that accepts Lk(N,M0,Mf )↑.

◮ Proposition 8. Consider a BPP net N . For every computation M0[σ〉M > Mf there is

M0[σ′〉M ′ >Mf with λ(σ′)� λ(σ) and |σ′| 6 tc(Mf)2 · |T |.

The key to proving the proposition is to consider a structure that makes the concurrency

among transitions in the BPP computation of interest explicit. Phrased differently, we give a

true concurrency semantics (also called partial order semantics and similar to Mazurkiewicz

traces) to BPP computations. Since BPPs do not synchronize, the computation yields

a forest where different branches represent causally independent transitions. To obtain a

subcomputation that covers the final marking, we select from the forest a set of leaves that

corresponds exactly to the final marking. We then show that the number of transitions in

the minimal forest that generates the selected set of leaves is polynomial in the number of

tokens in the final marking and in the number of transitions.

To make the proof sketch for Proposition 8 precise, we use (and adapt to our purposes)

unfoldings, a true concurrency semantics for Petri nets [18]. The unfolding of a Petri net

is the true concurrency analogue of the computation tree – a structure that represents

all computations. Rather than having a node for each marking, there is a node for each
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token in the marking. To make the idea of unfoldings formal, we need the notion of an

occurrence net, an unlabeled BPP net O = (P ′, T ′, F ′) that is acyclic and where each place

has at most one incoming transition and each transition creates at most one token per place:
∑

t′∈T ′ F (t′, p′) 6 1 for every p′ ∈ P ′. Two elements x, y ∈ P ′ ∪T ′ are causally related, x E y,

if there is a path from x to y. We use ⌊x⌋ = {y ∈ P ′ ∪ T ′ | y E x} to denote the predecessors

of x ∈ P ′ ∪ T ′. The E-minimal places are denoted by Min(O). The initial marking of O is

fixed to having one token in each place of Min(O) and no tokens elsewhere. So occurrence

nets are 1-safe and we can identify markings with sets of places P ′
1, P

′
2 ⊆ P ′ and write

P ′
1[t′〉P ′

2. To formalize that O captures the behavior of a BPP net N = (Σ, P, T, F, λ) from

marking M0, we define a folding homomorphism h : P ′ ∪ T ′ → P ∪ T satisfying

(1) Initiation: h(Min(O)) = M0.

(2) Consecution: For all t′ ∈ T ′, h(•t′) = •h(t′), and all p ∈ P , (h(t′•))(p) = F (h(t′), p).

Here, h(P ′
1) : P → N with P ′

1 ⊆ P ′ is a function with

(h(P ′
1))(p) = |{p′ ∈ P ′

1 | h(p′) = p}|.

(3) No redundancy: For all t′1, t
′
2 ∈ T ′, with •t′1 = •t′2 and h(t′1) = h(t′2), we have t′1 = t′2.

The pair (O, h) is called a branching process of (N,M0). Branching processes are partially

ordered by the prefix relation which, intuitively, states how far they unwind the BPP. The

limit of the unwinding process is the unfolding Unf(N,M0), the unique (up to isomorphism)

maximal branching process. It is not difficult to see that there is a one to one correspondence

between the firing sequences in the BPP net and the firing sequences in the unfolding.

Note that Unf(N,M0) will usually have infinitely many places and transitions, but every

computation will only use places up to a bounded distance from Min(O). With this, we are

prepared to prove the proposition.

Proof of Proposition 8. Consider a computation M0[σ〉M with M >Mf in the given BPP

net N = (Σ, P, T, F, λ). Let (O, h) with O = (P ′, T ′, F ′) be the unfolding Unf(N,M0). Due

to the correspondence in the firing behavior, there is a sequence of transitions τ in O with

h(τ) = σ and Min(O)[τ〉P ′
1 with h(P ′

1) = M . Since M > Mf , we know that for each place

p ∈ P , the set P ′
1 contains at least Mf (p) many places p′ with h(p′) = p. We arbitrarily

select a set Xp of size Mf(p) of such places p′ from P ′
1. Let X =

⋃

p∈P Xp be the union for

all p ∈ P .

The computation τ induces a forest in O that consists of all places that contain a token

after firing τ and their predecessors. We now construct a subcomputation by restricting τ

to the transitions leading to the places in X . Note that the transitions leading to X are

contained in ⌊X⌋, which means we can define the subcomputation as τ1 = π⌊X⌋(τ), i.e. the

projection of τ onto ⌊X⌋. In τ1, we mark all E-maximum transitions t′ that lead to two

different places in X . Formally, if there are x, y ∈ X with t′ ∈ ⌊x⌋ ∩ ⌊y⌋ and there is no

t′′ ∈ ⌊x⌋ ∩ ⌊y⌋ with t′ E t′′, then we mark t′. We call the marked t′ the join transitions.

Assume that t′ 6= t′′ are two join transitions that occur on the same branch of the forest.

Note that for two places in X , there is either no join transition or a unique one leading

to these two places. Consequently, t′ and t′′ have to lead to different places of X . Let

t′t1 . . . tmt′′ be the transitions on the branch in between t′ and t′′. We assume that t′ and

t′′ are adjacent join transitions, i.e. none of the ti is a join transition.

Since t′, t′′ occur in τ1, all ti also have to occur in τ1. If there are indices j < k such

that tj = tk, we may delete tj+1 . . . tk from τ1 while keeping a transition sequence that

covers X . It will cover X as none of the deleted transitions was a join transition, i.e. we

will only lose leaves of the forest that are not in X . We repeat this deletion process until

there are no more repeating transitions between adjacent join transitions. Let the resulting
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transition sequence be τ2. First, note that for any x ∈ X , there are at most tc(Mf ) many

join transitions on the branch from the corresponding minimal element to x: In the worst

case, for each place in X \ {x}, there is a join transition on the branch, and |X | = tc(Mf).

Between any two adjacent join transitions along such a path, there are at most |T | transitions

(after deletion). Hence, the number of transitions in such a path is bounded by tc(Mf) · |T |.

Since we have tc(Mf ) many places in X , the total number of transitions in τ2 is bounded

by tc(Mf )2 · |T |. ◭

Lower Bound

We present a family of BPP net languages for which the minimal FSA representing the

upward closure are exponential in the size of the input. The idea is to rely on the binary

encoding of numbers, which allows us to handle 2n using a polynomially sized net.

◮ Lemma 9. For all numbers n ∈ N, we can construct a BPP net N(n) = ({a}, P, T, F, λ)

and markings M0,Mf of size polynomial in n such that L((N(n),M0,Mf ) = {a2n

} .

Proof. The BPP net N(n) consists of three places p0, p1, pf and two transitions t, ta.

Transition t is ε-labeled, consumes one token from p0, and creates 2n tokens on

p1. Transition ta is labeled by a and moves one token from p1 to pf . Formally,

λ(t) = ε, F (p0, t) = 1, F (t, p1) = 2n, λ(ta) = a, F (p1, ta) = 1, F (ta, pf ) = 1. All other

values for F are 0. The initial marking M0 places one token on p1 and no tokens elsewhere,

the final marking Mf requires 2n tokens on pf and no tokens elsewhere. Note that F as

well as Mf have polynomially-sized encodings. There is a unique covering computation in

N(n), namely the computation M0[σ〉Mf , where σ = t. ta . . . ta
︸ ︷︷ ︸

2n times

. Thus, the language of

(N(n),M0,Mf ) is as required. ◭

4 Downward Closures

We consider the problem of constructing a finite state automaton accepting the downward

closure of a Petri net and a BPP net language, respectively. The downward closure often

has the property of being a precise description of the system behavior, namely as soon as

asynchronous communication comes into play: If the components are not tightly coupled,

they may overlook commands of the partner and see precisely the downward closure of the

other’s computation. As a result, having a representation of the downward closure gives the

possibility to design exact or under-approximate verification algorithms.

Computing the downward closure

Given: A Petri net instance (N,M0,Mf ).

Compute: An FSA A with L(A) = L(N,M0,Mf )↓.

4.1 Petri Nets

The downward closure of Petri net languages has been shown to be effectively computable

in [22]. The algorithm is based on the Karp-Miller tree [27], which can be of non-primitive

recursive size. We now present a family of Petri net languages that are already downward

closed and for which the minimal finite automata have to be of non-primitive recursive size

in the size of the input. Our result relies on a construction due to Mayr and Meyer [37]. It

gives a family of Petri nets whose computations all terminate but, upon halting, may have

produced Ackermann many tokens on a distinguished place.
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We first recall the definition of the Ackermann function.

◮ Definition 10. The Ackermann function is defined inductively as follows:
Acker0 (x) = x+ 1

Ackern+1 (0) = Ackern(1)

Ackern+1(x+ 1) = Ackern(Ackern+1(x)) .

◮ Lemma 11. For all n, x ∈ N, there is a Petri net N(n) = ({a}, P, T, F, λ) and markings

M
(x)
0 ,Mf of size polynomial in n+x such that L

(

N(n),M
(x)
0 ,Mf

)

=
{
ak | k 6 Ackern(x)

}
.

Our lower bound is an immediate consequence of this lemma.

◮ Theorem 12. There is a family of Petri net languages for which the minimal finite au-

tomata representing the downward closure are of non-primitive recursive size.

This hardness result relies on a weak computation mechanism of very large numbers that

is unlikely to show up in practical examples. The SRE inclusion problem studied in the

following section can be understood as a refined analysis of the computation problem for

downward closures.

It remains to prove Lemma 11. We start by defining a preliminary version of the required

nets. The construction is inductive and imitates the definition of the Ackermann function.

◮ Definition 13. We define the Petri net AN 0 to be

AN 0 = ({a}, P 0, T 0, F 0, λ0) with

P 0 =
{

in0, out0, start0, stop0, copy0
}
,

T 0 =
{
t0start, t

0
stop, t

0
copy

}
,

λ0(t) = ε for all t ∈ T 0 .

The flow relation is given by Figure 2, where each edge carries a weight of 1.

For n ∈ N, we define AN n+1 inductively by

AN n+1 = ({a}, Pn+1, T n+1, Fn+1, λn+1) with

Pn+1 = Pn ∪ {inn+1, startn+1, copyn+1, outn+1, stopn+1, swapn+1, tempn+1, }

T n+1 = T n ∪ {tn+1
start, t

n+1
copy, t

n+1
stop , t

n+1
restart, t

n+1
in , tn+1

swap, t
n+1
temp},

λn+1(t) = ε for all t ∈ T n+1.

The flow relation is given by Figure 3, where again each edge carries a weight of 1.

Let us furthermore define for each x ∈ N the marking M
(x)
0 of AN n that places one token

on startn, x tokens on inn and no token elsewhere.

We prove that AN n indeed can weakly compute Ackern(m).

in0 t0copy out0

start0 t0start copy0 t0stop stop0

Figure 2. The flow relation of the Petri net AN 0.



14 On the Upward/Downward Closures of Petri Nets

inn+1

startn+1

AN n

inn

startn

outn

stopntn+1
start

tn+1
swap

swapn+1

tn+1
restart

tn+1
in

tn+1
copy

tn+1
temp tempn+1 tn+1

stop stopn+1

outn+1

Figure 3. The flow relation of the Petri net AN n+1.

◮ Lemma 14. For all n, x ∈ N:

(1) There is M
(x)
0 [σ〉M of AN n such that M(outn) = Ackern(x), M(stopn) = 1.

(2) There is no computation starting in M0 that creates more than Ackern(x) tokens on

outn.

Proof. We proof both statements simultaneously by induction on n.

Base case, n = 0: We have Acker0(x) = x+ 1. The only transition that is enabled in AN 0

is the starting transition t0start . Firing it leads to one token on the copy place copy0. Now

we can fire the copy transition t0copy x times, leading to x tokens on out0. Finally, we fire

the stopping transition t0stop, which leads to one token on stop0 and in total x+ 1 tokens on

out0. This is the computation maximizing the number of tokens on out. Firing t0copy less

than x times or not firing t0stop leads to less tokens on out0.

Inductive step, n 7→ n+ 1: Initially, we can only fire the starting transition tn+1
start , creating

one token on inn and one token on startn. We can now execute the computation of AN n that

creates Ackern(1) tokens on outn and one token on stopn, which exists by induction. We

consume one token from inn+1 and the token on stopn to create a token on swapn+1 using

tn+1
in . This token allows us to swap all Ackern(1) tokens from outn to inn using tn+1

swap. After

doing this, we move the token from swapn+1 to tnstart using the restart transition tn+1
restart. We

iterate the process to create

Ackern(Ackern(1)) = Ackern(Ackern+1(0)) = Ackern+1(1)

tokens on outn+1, which we can then swap again to inn.

We iterate this process x-times, which creates Ackern+1(x) tokens on outn, since

Ackern+1(x) = Ackern(. . .Ackern
︸ ︷︷ ︸

x+1 times

(1)) .

Note that it is not possible to create more than Ackern+1(x) on outn. Having y tokens on

inn, we cannot create more than Ackern(y) tokens on outn by induction. Furthermore, if

we do not execute tswap as often as possible, say we leave y′ out of y tokens on outn, we end

up with Ackern(y − y′) + y′ 6 Ackern(y) tokens on outn, since

Ackern(k) + k′
6 Ackern(k + k′)
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for all k, k′ ∈ N. Finally, we move the token on tn+1
stop to tempn+1 using tn+1

temp, and then move

all Ackern(x) tokens to outn+1 using tn+1
copy. We end the computation by firing tn+1

stop to move

the token on tempn+1 to stopn+1. We now have one token on stopn+1 and Ackern(x) tokens

on outn+1 as required.

This maximizes the number of tokens on outn+1: As already argued, we cannot create

more than Ackern(x) tokens on outn, and firing tn+1
copy less than Ackern(x) times will lead to

less tokens on outn+1. ◭

We are now prepared to tackle the proof of Lemma 11.

Proof of Lemma 11. Let n ∈ N. We define N(n) to be the Petri net that is obtained from

AN n by adding a place final and a transition tfinal that is labeled by a and moves one token

from outn to final.is defined as before. The final marking Mf is zero on all places.

By Lemma 14, we can create at most Ackern(x) tokens on outn. We can then move a

part of these tokens to final, producing up to Ackern(x) many as in the process. This proves

L
(

N(n),M
(x)
0 ,Mf

)

=
{
ak | k 6 Ackern(x)

}
.

Note that the size of N(n) is a constant plus the size of AN n, which is linear in n. The

final and initial marking are linear in n+ log x. ◭

4.2 BPP Nets

We prove an exponential upper bound on the size of the finite automata representing the

downward closure of BPP languages. Then, we present a family of BPP languages for which

the minimal finite automata representing their downward closure are exponential in the size

of the input BPP nets.

Upper Bound

Assume that the net N in the Petri net instance (N,M0,Mf) of size n is a BPP net.

◮ Theorem 15. We can construct a finite automaton of size O(2poly(n)) for L(N,M0,Mf)↓.

The key insight for simulating N by a finite automaton is the following: If during a firing

sequence a marking occurs that has more than c tokens (where c is specified below) in some

place p, then there has to be a pump, a subsequence of the firing sequence that can be

repeated to produce arbitrarily many tokens in p. The precise statement is this, where we

use m = max(F ) to refer to the maximal multiplicity of an edge.

◮ Lemma 16. Let M0[σ〉M such that for some place p ∈ P , we have M(p) > c with

c = tc(M0) · (|P | ·m)(|T |+1) .

Then for each j ∈ N, there is M0[σj〉Mj such that

(1) σ� σj, (2) M 6Mj, and (3) Mj(p) > j.

Proof. We consider the unfolding (O, h) of N , as defined in Subsection 3.2. Let σ′ be a firing

sequence of O induced by σ, i.e. h(σ′) = σ (where h is extended to sequences of transitions

in the obvious way), and σ′ can be fired from the marking M ′
0 of O corresponding to M0.

Executing σ′ leads to a marking M ′, such that the sum of tokens in places p′ of O with

h(p′) = pN is equal to M(pN ) for each place pN of N . In particular, this holds for the place

p on which we exceed the bound c:
∑

p′∈P ′,

h(p′)=p

M ′(p′) = M(p) > c .
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Recall thatO is a forest, and each tree in it has a minimal place r′ ∈ Min(O) that corresponds

to a token assigned to a place of N by M0, i.e. M ′
0(r′) = 1. We fix the root node r of the

tree T with a maximal number of leaves that correspond to place p (called p-leaves in the

following), i.e. the root node r such that the number of places p′ with h(p′) = p, M ′(p′) = 1

in the corresponding tree is maximal. Note that the number of p-leaves in this tree is at

least

c1 =
c

tc(M0)
= (ℓ ·m)(|T |+1) .

Since there are only tc(M0) many trees in the forest, if all trees have strictly less than c1

many p-leaves, the whole forest cannot have c many p-leaves.

We now consider the subtree Tp of T that is defined by the p-leaves in T , i.e. the tree

one gets by taking the set of p-leaves X in T and all places and transitions ⌊X⌋ that are

their predecessors. This tree has the following properties:

(i) Its leaves are exactly the p-leaves in T .

(ii) Each place in it has out-degree 1 if it is not a p-leaf. That the out-degree is at most

1 is clear by how O was defined: Since each place only carries at most one token, it

can be consumed by at most one transition during the run, and we don’t consider the

transitions that are not fired in the run in Tp. That the out-degree of the places that

are not p-leaves is exactly 1 is because we only consider transitions leading to p-leaves

in Tp.

(iii) Each transition has out-degree at most m ·ℓ. (In the worst case, each transition creates

m tokens in each of the ℓ places, which is modeled in O by having one place for each

token that is produced.)

We will call a transition in Tp of out-degree at least 2 a join-transition, since it joins (at

least) two branches of the tree that lead to a p-leaf. Our goal is to show that there is a

branch of Tp in which at least |T | + 1 many join-transitions occur.

Claim: Let T be a tree with x leaves in which all nodes have out-degree at most k. Then T

has a branch with at least logk x nodes of out-degree at least 2.

Towards a proof of the claim, assume that the maximal number of nodes of out-degree

greater than 2 in any branch of the tree is h < logk x. To maximize the number of leaves,

we assume that the number of such nodes is exactly h in every branch, and all nodes (but

the leaves) have out-degree k. The number of leaves in this tree is kh, but since h < logk x,

this is less than x: kh < klogk x = x.

Instantiating the claim for x = c1 and k = m · |M0| yields that Tp has a branch with

at least c2 = logm·tc(M0) c1 many join-transitions, and by the definition of c, c2 = |T | + 1.

Since the original BPP net has only |T | many different transitions, there have to be join-

transitions τ and τ ′ in the same branch with h(τ) = h(τ ′) = t for some transition t of the

original net.

Since τ was a join-transition, it has at least two child branches b1 and b2 that lead to a p-

leaf. We assume without loss of generality that b1 is the branch on which τ ′ occurs, and b2 is

another branch. We consider the sequence of transitions σpump
p that occur on b1 when going

from τ to τ ′ (including τ , not including τ ′). We also consider the sequence of transitions σgen
p

that occur on b2 when going from τ to a p-leave (not including τ). Let σpump and σgen be

the corresponding sequences in the original BPP net, i.e. σpump = h(σpump
p ), σgen = h(σgen

p ).
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We now modify the run σ in the original net to obtain the desired amount of j tokens.

We decompose σ = σ1.t.σ2, where t is the transition that corresponds to τ in Tp. We extend

the run to

σj = σ1. σ
pump . . . σpump

︸ ︷︷ ︸

j times

.t.σ2. σ
gen . . . σgen

︸ ︷︷ ︸

j times

.

Obviously, σ is a subsequence of σj , and therefore satisfies the required Property (1). We

have to argue why σj is a valid firing sequence, why firing σj leads to a marking greater

than M (Property (2)) and why it generates at least j tokens in place p (Property (3)).

The latter is easy: σgen corresponds to a branch of Tp leading to a p-leaf, i.e. firing it

creates one additional token in p that will not be consumed by another transition in σ.

Note that up to σ1, σ and σj coincide. Since t could be fired after σ1, σpump can be

fired after σ1: t corresponds to transition τ in O, and so does the first transition in σpump.

Since σpump was created from a branch in the tree Tp, each transition will consume the

token produced by its immediate predecessor. The last transition creates a token in the

place that feeds transition τ ′, but h(τ) = t = h(τ ′), so after firing σpump, we can fire t

again. (Either as the first transition of the next σpump, or after all pumps have been fired.)

Furthermore, t corresponds to the join-transition τ , i.e. it does create a token in the place

that is the starting point of σgen. This token will not be consumed by any other transition

in the sequence t.σ2, so after firing σpump j times, we can indeed fire σgen j times.

As argued above, firing σgen and σpump has a non-negative effect on the marking, so the

marking one gets by firing σ′ is indeed greater than the marking M . ◭

It remains to use Lemma 16 to prove Theorem 15.

Proof of Theorem 15. We will state the construction of the automaton, prove its soundness

and that the size of the automaton is as required. The automaton for L(N,M0,Mf )↓ is the

state space of N with token values beyond c set to ω. For every transition, we also have an

ε-variant to obtain the downward closure.

More formally, A = (Σ, Q,→A, qinit , F ) is defined as follows: Its set of states is

Q = P → ([0..c] ∪ {ω}), where c = tc(M0) · (|P | ·m)(|T |+1) as in Lemma 16. This means

each state is a marking that will assign to each place a number of tokens up to c or ω. For

each transition t of the BPP net N and each state q ∈ Q such that q(p) > F (p, t) (where we

define ω > k to be true for all k ∈ N), →A contains two transitions (q, λ(t), q′) and (q, ε, q′).

Here, q′ is defined by

q′(p) = (q(p) ⊖ F (p, t)) ⊕ F (t, p) ,

for all p ∈ P , where ⊕ and ⊖ are variants of + and − that treat ω as infinity: x⊕ y = x+ y

if x+y < c, x⊕y = ω otherwise. Similarly, x⊖y = x−y if x 6= ω. Note that if t was already

labeled by ε, the two transitions coincide. The initial state is defined by qinit(p) = M0(p)

for all p ∈ P . A state q ∈ F is final if it covers the final marking Mf of N , i.e. q(p) >Mf(p)

for all places p. Again, we assume ω > k to hold for all k ∈ N.

We prove that indeed L(A) = L(N,M0,Mf) ↓ holds. First assume w ∈ L(N,M0,Mf) ↓.

Then there is a computation π = M0[σ〉M of N such that M > Mf and w � λ(σ). We

can delete transitions in σ to obtain a sequence of transitions τ with λ(τ) = w. (One may

not be able to fire τ .) We construct a run ρ of the automaton A starting in q0 by replacing

transitions in σ by a corresponding transition of the automaton. For the transitions t present

in τ , we pick the variant of the transitions labeled by λ(t), for the ones not present in τ , we

pick the ε-labeled variant. Note that ρ is a valid run of A because π was a computation of
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N . The run ρ ends in a state qρ such that for each place p, either qρ(p) = M(p) holds, or

q(p) = ω. Since M > Mf , this means that qρ is final. We have constructed an accepting

run of A that produces the word w.

Now assume that w ∈ L(A) is a word accepted by the automaton. Let ρ be an accepting

run and let q0, q1, . . . , qs be the states occurring during ρ. We prove that there is a compu-

tation π = M0[σ〉M of N such that M >Mf and w� λ(σ). Assume the final state qs does

not assign ω to any place, qs(p) 6= ω for all p ∈ P . Note that in this case, we have qi(p) 6= ω

for all i ∈ [0..s] and all p ∈ P , since qi(p) = ω implies qj(p) = ω for all j ∈ [i..s]. In this case,

we can easily construct a sequence of transitions σ corresponding to ρ: For each transition

in ρ, we take the corresponding transition of N . Note that the transition in ρ can be labeled

by ε while the transition of N is not labeled by ε. Still, w� λ(σ) will hold. Furthermore,

qs is a marking for N (since ω does not occur), and since qs was final, qs >Mf has to hold.

Now assume that there is a unique place p such that qs(p) = ω. Let i ∈ [0..s] be the

first index such that qi(p) = ω. We decompose the run ρ = ρ1.ρ2, where ρ1 is the prefix

that takes the automaton from state q0 to qi. As in the previous case, we may obtain

sequences of transitions σ1 and σ2 that correspond to ρ1 and ρ2. In particular, we have

w� λ(σ1).λ(σ2). The first sequence σ1 is guaranteed to be executable, i.e. π1 = M0[σ1〉M1

is a valid computation for someM1. Since qi(p) = ω, the transition relation of the automaton

guarantees that M1(p) > c.

It might not be possible to fire σ2 from M1, because σ2 may consume more than c tokens

from place p. Let

d =
∑

j∈[1..|σ2|]

F (p, tj) + Mf(p) .

where σ2 = t1.t2 . . . t|σ2|. The number d is certainly an upper bound for the number of tokens

needed in place p to be able to fire σ2 and end up in a marking M2 such that M2(p) >Mf(p).

We apply Lemma 16 to obtain a supersequence σ′
1 of σ1 with M0[σ′

1〉M ′
1 where M ′

1 > M1

and M1(p) > d. Now consider the concatenation σ = σ′
1.σ2. Since the marking M ′

1 has

enough tokens in place p, σ is executable and M0[σ〉M , where M >Mf .

If the final state qp assigns ω to several places, the above argumentation has to be applied

iteratively to all such places.

It remains to argue argue that the size of the automaton is in O
(
2poly(n)

)
. The size of

the automaton is certainly polynomial in its number of states |Q|. We have

|Q| = |P → ([0..c] ∪ {ω})| = |[0..c] ∪ {ω}|ℓ = (c+ 2)ℓ

=
(

tc(M0)(|P | ·m)(|T |+1) + 2
)ℓ

6

(

(ℓ · 2n)(ℓ · 2n)(|T |+1) + 2
)ℓ

6

(

(2(n+1))(n+2) + 2
)n

=
(

2(n+1)·(n+2) + 2
)n

6 (2(n+1)·(n+2))n · 2n
6 2(n+1)·(n+2)·n+1 ∈ O

(

2poly(n)
)

.

◭

Lower Bound

Consider the family of BPP nets from Lemma 9 with L(N(n),M0,Mf ) = {a2n

} for all n ∈ N.

The minimal finite state automata recognizing the downward closure {ai | i 6 2n} has at

least 2n states.
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5 SRE Inclusion in Downward Closure

The downward closure of a Petri net language is hard to compute. We therefore propose

to under-approximate it by an SRE as follows. Assume we have a heuristic coming up

with a candidate SRE that is supposed to be an under-approximation in the sense that

its language is included in the downward closure of interest. The problem we study is the

algorithmic task of checking whether the inclusion indeed holds. If so, the SRE provides

reliable (must) information about the system’s behavior, behavior that is guaranteed to

occur. This information is useful for finding bugs.

SRE Inclusion in Downward Closure (SRED)

Given: A Petri net instance (N,M0,Mf), an SRE sre.

Decide: L(sre) ⊆ L(N,M0,Mf)↓?

5.1 Petri Nets

◮ Theorem 17. SRED is EXPSPACE-complete for Petri nets.

Hardness is due to the hardness of coverability [34].

◮ Lemma 18. SRED is EXPSPACE-hard for Petri nets.

Proof. We reduce the EXPSPACE-complete coverability problem for Petri nets. Given an

Petri net instance (N,M0,Mf ), where N is an unlabeled net, we equip N with the label-

ing λ(t) = ε for all transitions t. We have that Mf is coverable from Mf if and only if

L(N,M0,Mf ) = {ε}. If Mf is not coverable, the language is empty) Thus, we have that Mf

is coverable iff {ε} ⊆ L(N,M0,Mf )↓. To conclude the proof, note that {ε} is the language

of the SRE ∅∗. ◭

For the upper bound, we take inspiration from a recent result of Zetzsche [47]. He has shown

that, for a large class of models, computing the downward closure is equivalent to deciding

an unboundedness problem. We use a variant of this problem that comes with a complexity

result. The simultaneous unboundedness problem for Petri nets (SUPPN) is, given a Petri

net N , an initial marking M0, and a subset X ⊆ P of places, decide whether for each n ∈ N,

there is a computation σn such that M0[σn〉Mσn
with Mσn

(p) > n for all places p ∈ X . In

[14], Demri has shown that this problem is EXPSPACE-complete.

◮ Theorem 19 ([14]). SUPPN is EXPSPACE-complete.

We turn to the reduction of the inclusion problem SRED to the unboundedness problem

SUPPN. Since SREs are choices among products, an inclusion L(sre) ⊆ L(N,M0,Mf )↓

holds iff L(p) ⊆ L(N,M0,Mf ) ↓ holds for all products p in sre. Since L(N,M0,Mf ) ↓ is

downward closed, we can further simplify the products by removing choices. Fix a total

ordering on the alphabet Σ. Such an ordering can be represented by a word wΣ. We define

the linearization operation that takes a product and returns a regular expression:

lin(a+ ε) = a lin(a) = a

lin(Γ∗) = (πΓ(wΣ))∗ lin(p1.p2) = lin(p1).lin(p2) .

For example, if Σ = {a, b, c} and we take wΣ = abc, then p = (a+c)∗(a+ε)(b+c)∗ is turned

into lin(p) = (ac)∗a(bc)∗. The discussion justifies the following lemma.
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◮ Lemma 20. L(sre) ⊆ L(N,M0,Mf) ↓ if and only if for all products p in sre we have

L(lin(p)) ⊆ L(N,M0,Mf )↓.

Proof. L(lin(p)) ⊆ L(sre) holds, so one direction is clear.

For the other direction, we show that every word in L(sre) is a subword of a word in

L(lin(p)). From this, if L(lin(p)) is included in the downward closure, then all its subwords

will be contained in the downward closure. In particular, all words in L(sre) will be contained

in the downward closure. Towards proving that every word in L(sre) is a subword of a word

in L(lin(p)), note that for any word in L((a+ ε)), the letter a may or may not occur, while

in lin((a + ε)) = a, it is forced to occur. Furthermore, given v ∈ Γ∗, we have that v is a

subword of πΓ(wΣ)|v| by dropping in each iteration all but one letter. Therefore, all words

in Γ∗ are subwords of lin(Γ∗). If we combine those two insights, the desired statement

follows. ◭

With Lemma 20 at hand, it remains to check L(lin(p)) ⊆ L(N,M0,Mf )↓ for each product.

To this end, we reduce this check to SUPPN. We first understand lin(p) as a Petri net Nlin(p)..

We modify this Petri net by adding one place pΓ for each block (πΓ(wΣ))∗ = ai . . . aj. Each

transition that repeats or leaves the block (the ones labeled by aj) is modified to generate

a token in pΓ. As a result, pΓ counts how often the word πΓ(wΣ) has been executed.

The second step is to define an appropriate product of Nlin(p) with the Petri net of

interest. Intuitively, the product synchronizes with the downward closure of N .

◮ Definition 21. Consider two Petri nets Ni = (Σ, Pi, Ti, Fi, λ), i = 1, 2, with P1 ∩ P2 = ∅

and T1 ∩ T2 = ∅. Their right-synchronized product N1 ⋊N2 is the labeled Petri net

N1 ⋊N2 = (Σ, P1 ∪· P2, T1 ∪· T, F, λ) ,

where for the transitions t1 ∈ T1, λ and F remain unchanged. The new transitions are

T = {merge(t1, t2) | t1 ∈ T1, t2 ∈ T2, λ1(t1) = λ2(t2)} with

λ(merge(t1, t2)) = λ1(t1) = λ2(t2) ,

F (pi,merge(t1, t2)) = Fi(pi, ti), F (merge(t1, t2), pi) = Fi(ti, pi) for pi ∈ Pi, i = 1, 2.

As indicated by the name right-synchronized, the transitions of N1 can be fired without

synchronization, while the transitions of N2 can only be fired if a transition of N1 with the

same label is fired simultaneously.

Consider a Petri net N with initial marking M0. We compute the right-synchronized

product N ′ = N ⋊ Nlin(p), take the initial marking M ′
0 that coincides with M0

but puts a token on the initial place of Nlin(p), and focus on the counting places

X = {pΓ | (πΓ(wΣ))∗ is a block in p}. The following correspondence holds.

◮ Lemma 22. L(lin(p)) ⊆ L(N,M0,M∅)↓ if and only if the places in X are simultaneously

unbounded in N ′ from M ′
0. Here M∅ is the zero marking, i.e. M∅(p) = 0 for all p.

Proof. Let lin(p) = a1(πΣ1 (wΣ))∗a2 . . . ak(πΣk
(wΣ))∗ak+1 and let N ′ = N ⋊Nlin(p) be the

right-synchronized product as above.

We first assume that the places in X are simultaneously unbounded in N ′. Given a word

w ∈ L(lin(p)), we need to find v such that w� v ∈ L(N,M0,M∅). The word is of the shape

w = a1(πΣ1 (wΣ))n1a2 . . . ak(πΣk
(wΣ))nkak+1 .

Define n = maxni and let σ be the run that creates at least n tokens in each place of pΣi
∈ X .

Since the run creates at least n tokens in pi, it has to fire the transition leaving the block



M. F. Atig, R. Meyer, S. Muskalla, and P. Saivasan 21

πΣi
(wΣ)) n times. This transition is a synchronized transition, i.e. of type merge(t, t′). The

fact that it could be fired means that before it, we have actually seen the synchronized

transitions corresponding to the rest of the block, and before the block the synchronization

transition corresponding to ai. Altogether, we obtain that

w′ = a1(πΣ1 (wΣ))na2 . . . ak(πΣk
(wΣ))nak+1 .

is a subword of λ(σ), and by the choice of n, w is a subword of w′.

Towards a proof for the other direction, assume that L(lin(p)) ⊆ L(N ′,M0, 0) ↓ holds.

Given any n, consider the word

w = a1(πΣ1 (wΣ))n . . . ak(πΣk
(wΣ))n ∈ L(lin(p)) .

Since w ∈ L(N ′,M0, 0)↓, there is a valid firing sequence σ with w� λ(σ). We consider the

run σ′ of N ′ that we construct as follows: For each t in σ, whenever λ(t) is present in w, we

fire the synchronized transition merge(t, t′) (with suitable t′), whenever it is not present, we

fire the non-synchronized transition t. If this run is a valid firing sequence, it is immediate

that it generates n tokens in each place pΣi
: Each block πΣi

(wΣ)) is left n times in w, so

we trigger the synchronized transition that generates a token in pΣi
n times.

We have to argue why σ′ is a valid run. First note that on the places of N , firing the non-

synchronized version t or firing a synchronized version merge(t, t′) (for arbitrary suitable t′)

has the same effect. This shows that the non-synchronized transitions occurring in σ′ can

be fired, and the synchronized transitions satisfy the enabledness-condition on the places of

N , since σ was a valid firing sequence of N .

We still have to argue why the enabledness-condition on the places of Nlin(p) for the

synchronized transitions is also satisfied. This is since Nlin(p) was constructed as net

with language L(lin(p)), and we only use the synchronized transitions for the subword

w ∈ L(lin(p)). ◭

The lemma does not yet involve the final marking Mf . We modify N ′ and X such that

simultaneous unboundedness implies L(lin(p)) ⊆ L(N,M0,Mf ) ↓. The idea is to introduce

a new place pf that can become unbounded only after Mf has been covered. To this end, we

also add a transition tf that consumes Mf(p) tokens from each place p of N and produces

one token in pf . We add another transition tpump that consumes one token in pf and creates

two tokens in pf . Call the resulting net N ′′. The new initial marking M ′′
0 coincides with

M ′
0 and assigns no token to pf .

Note that we do not enforce that tf is only fired after all the rest of the computation has

taken place. We can rearrange the transitions in any valid firing sequence of N ′′ to obtain

a sequence of the shape σ.tf
k.tpump

k′

, where σ contains neither tf nor tpump.

◮ Lemma 23. L(lin(p)) ⊆ L(N,M0,Mf ) ↓ iff the places in X ∪ {pf } are simultaneously

unbounded in N ′′ from M ′′
0 .

To conclude the proof of Theorem 17, it remains to argue that the generated instance for

SUPPN is polynomial in the input, i.e. in (N,M0,Mf) and p. The expression lin(p) is

certainly linear in p, and the net Nlin(p) is polynomial in lin(p). The blow-up caused by

the right-synchronized product is at most quadratic, and adding the transitions and the

places to deal with Mf is polynomial. The size of M ′′
0 is polynomial in the size of M0 and p.

Altogether, the size of N ′′, X ∪ {pf}, and M ′′
0 (which together form the generated instance

for SUPPN) is polynomial in the size of the original input.
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5.2 BPP Nets

We show that the problem of deciding whether the language of an SRE is included in the

downward closure of a BPP net language is NP-complete.

◮ Theorem 24. SRED for BPP nets is NP-complete.

Hardness can be shown using a reduction from BPP coverability, which is NP-complete,

similar to Lemma 18. The hardness of BPP coverability itself can be easily shown by a

reduction from SAT, similar to the proof of the NP-hardness of reachability in BPP nets [16].

For membership in NP, we give a reduction to satisfiability of an existential formula in

Presburger arithmetic, the first-order theory of the natural numbers with addition, subtrac-

tion, and order.

◮ Definition 25. Let V be a set of variables with elements x, y. The set of terms t in

Presburger arithmetic and the set of formulas ϕ are defined as follows:

t ::= 0 p 1 p x p t− t p t+ t ϕ ::= t 6 t p ¬ϕ p ϕ ∨ ϕ p ∃x : ϕ .

An existential Presburger formula takes the form ∃x1 . . . ∃xn : ϕ where ϕ is a quantifier-free

formula. We shall also write positive Boolean combinations of existential formulas. By an

appropriate renaming of the quantified variables, any such formula can be converted into

an equivalent existential Presburger formula. We write ϕ(~x) to indicate that (at most) the

variables ~x = x1, . . . , xk occur free in ϕ. Given a function M from ~x to N, the meaning of

M satisfies ϕ is as usual and we write M |= ϕ to denote this. We rely on the following

complexity result:

◮ Theorem 26 ([42]). Satisfiability in existential Presburger arithmetic is NP-complete.

Note that L(sre) ⊆ L(N,M0,Mf )↓ iff the inclusion holds for every product p in sre. Given

such a product, we construct a new BPP net N ′ and an existential Presburger formula ψ(P ′)

such that L(p) ⊆ L(N,M0,Mf )↓ iff there is a marking M ′ reachable in N ′ from a modified

initial marking M ′
0 with M ′ |= ψ. This concludes the proof with the help of the following

characterization of reachability in BPP nets in terms of existential Presburger arithmetic.

◮ Theorem 27 ([46, 16]). Given a BPP net N = (Σ, P, T, F, λ) and an initial marking M0,

one can compute in polynomial time an existential Presburger formula Ψ(P ) so that for all

markings M : M |= Ψ(P ) if and only if M0[σ〉M for some σ ∈ T ∗.

After constructing N ′ and ψ(P ′), we may use Theorem 27 to construct formula Ψ(P ′)

that characterizes reachability in N ′. We have that L(p) ⊆ L(N,M0,Mf) ↓ if and only if

ψ(P ′) ∧ Ψ(P ′) is satisfiable, which can be checked in NP using Theorem 26.

Key to the construction of N ′ is a characterization of the computations that need to

be present in the BPP net for the inclusion L(p) ⊆ L(N,M0,Mf ) ↓ to hold. Wlog., in the

following we will assume that the product takes the shape

(a1 + ε)Σ∗
1(a2 + ε) . . .Σ∗

n−1(an + ε),

where Σ1, . . . ,Σn−1 ⊆ Σ and a1, . . . , an ∈ Σ. For this language to be included in

L(N,M0,Mf)↓, the BPP should have a computation with parts σi containing ai and parts

ρi between the σi that contain all letters in Σi and that can be repeated. To formalize the

requirement, recall that we use wΣ for a total order on the alphabet and πΣi
(wΣ) for the

projection to Σi ⊆ Σ.

Moreover, we define M 6c M ′, with c the constant defined in Lemma 16, if for all places

p ∈ P we have M ′(p) < c implies M(p) 6M ′(p).
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◮ Definition 28. Let p be a product. The BPP net N together with the markings M0,Mf

admits a p-witness if there is a computation

M0 = M1[σ0〉M ′
1[ρ1〉M2[σ1〉M ′

2[ρ2〉 . . .M ′
n−1[ρn−1〉Mn[σn〉M ′

n 6
c M ′

n ,

i.e. there are markings markings M1,M
′
1, . . . ,Mn,M

′
n and firing sequences σi, ρi that satisfy

Mi[σi〉M ′
i for all i ∈ [1..n], M ′

i [ρi〉Mi+1 for all i ∈ [1..n− 1], and moreover:

(1) ai � λ(σi), for all i ∈ [1..n],

(2) πΣi
(wΣ)� λ(ρi) for all i ∈ [1..n− 1],

(3) M ′
i 6

c Mi+1 for all i ∈ [1..n− 1], and

(4) M1 = M0 and Mf 6c M ′
n.

In a p-witness, (1) enforces that the ai occur in the desired order, and the first part of

(2) requires that πΣi
(wΣ) occurs in between. Property (3) means that each ρi (and thus

πΣi
(wΣ)) can be repeated. Property (4) enforces that the computation still starts in the

initial marking and can be extended to cover the final marking.

The following proposition reduces the problem SRED for BPP nets to checking whether

the BPP admits a p-witness.

◮ Proposition 29. L(p) ⊆ L(N,M0,Mf )↓ holds iff (N,M0,Mf) admits a p-witness.

Proof. Recall that we consider a product of the form

p = (a1 + ε)Σ∗
1(a2 + ε)Σ∗

2 · · · Σ∗
n−1(an + ε) .

Assume that (N,M0,Mf ) admits a p-witness (M1,M
′
1, · · · ,Mn,M

′
n) such that

M0 = M1[σ0〉M ′
1[ρ1〉M2[σ1〉M ′

2[ρ2〉 . . .M ′
n−1[ρn−1〉Mn[σn〉M ′

n 6
c M ′

n ,

satisfying the required properties. We will show L(p) ⊆ L(N,M0,Mf )↓ by proving that for

any word w ∈ L(p), there is a run M0[σ〉M ′′ such that w� λ(σ) and M ′
n 6c M ′′ (and hence

also Mf 6M ′′). Let w = x1v1 · · · vn−1xn, where xi ∈ {ai, ε} and vi ∈ Σ∗
i .

In sequel, we will prove that for every prefix w′ = x1v1 · · ·xi, we have a run of the form

M0[γ〉M ′′′
i such that w′ � λ(γ) and M ′

i 6c M ′′′
i . Similarly, we show that for any prefix of

the form w′ = x1v1 · · ·xiv
′
i, where v′

i is a prefix of vi, we have a run of the form M0[γ〉M ′′
i

such that w′ � λ(γ) and Mi 6
c M ′′

i .

We prove both statements simultaneously by induction. Consider the first statement for

i = 1: We have w′ = x1, and M1[σ1〉M ′
1 is the required run by Property (1).

Consider the second statement for some i for which we assume that the first statement

holds. Let

w′′ = x1v1 . . . xiv
′
i ,

where v′
i.a is a prefix of vi. To show the required statement, we consider an inner induction

on the length of v′
i. In the base case, v′

i = ε, and the statement is immediate by the

hypothesis of the outer induction. Assume that v′
i = v′′

i .b, then by the inner induction,

we have a run M1[γ〉M ′′
i such that x1v1 · · ·xiv

′′
i � λ(γ) and Mi 6c M ′′

i . If for all places

p ∈ P , M ′′
i (p) < c holds, then we have Mi 6 M ′′

i . We prolong γ by ρi, which is possible

by Property (3), and get the required run by Property (2). Suppose the set of places X to

which more than c tokens are assigned is non-empty. Using Lemma 16 repeatedly for each

place in X , we pump the run to create enough tokens to be able to execute the rest of the

run. We obtain a run M1[γ′〉M∗
i such that λ(γ)� λ(γ′), for all x ∈ X M∗

i (x)−M ′′
i (x) > |ρi|
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and M ′′
i 6c M∗

i . This is can be prolonged by ρi to obtain the desired computations. This

concludes the inner induction and the proof of the second statement for i.

It remains to prove the first statement for i + 1, assuming that the second statement

holds for i. Consider

w′ = x1v1x2 . . . xivixi+1 .

By induction, we get a run M1[γ〉M ′′
i such that x1v1x2 · · ·xivi � λ(γ) and Mi 6c M ′′

i .

Suppose for all places p ∈ P , M ′′
i < c, then we have Mi 6M ′′

i . Hence we can easily extend

the computation by M ′′
i [σi〉M ′′′

i , which gives us the required run. Otherwise, we proceed as

for the second statement and pump up the values in these places to be greater than the size

of σi. Afterwards, we can extend the computation by σi, obtaining the desired run.

For the other direction, consider the word

w = a1.(πΣ1 (wΣ))ℓ·c+1.a2.(πΣ2 (wΣ))ℓ·c+1.a3 · · ·an ∈ L(p) .

Since we have L(p) ∈ L(N,M0,Mf)↓↓, we have a run of the form

M1[α1〉J ′
1[β1〉J1[α2〉J ′

2[β2〉J2 · · · J ′
n ,

such that ai � λ(αi) and πΣi
(wΣ) � λ(βi). Since the length of βi is ℓ · c+ 1, there have to

be markings between J ′
i and Ji such that

J ′
i [β

1
i 〉J1

i [β2
i 〉J2

i [β3
i 〉Ji ,

where J1
i 6c J2

i . Now, we let M ′
i = J1

i , Mi = J2
i , σ1 = α1.β

1
1 , σi = β3

i−1.αi.β
1
i and ρi = β2

i .

This gives us the required p-witness. ◭

We now reduce the problem of finding a p-witness to finding in a modified unlabeled BPP

net N ′ = (∅, P ′, T ′, F ′, λ′) a reachable marking that satisfies a Presburger formula ΨM0

Mf
(P ′).

The task is to identify 2n markings that are related by 2n−1 computations as required by a

p-witness. The idea is to create 2n− 1 replicas of the BPP net and run them independently

to guess the corresponding computations σi resp. ρi. The Presburger formula ΨM0

Mf
will

check that the target marking reached with σi coincides with the initial marking for ρi, and

the target marking reached with ρi is the initial marking of σi+1. To this end, the net N ′

remembers the initial marking that each replica started from in a full copy (per replica) of

the set of places of the BPP net. Furthermore ΨM0

Mf
checks that each ρi can be repeated

by ensuring that the final marking in the corresponding replica is larger than the initial

marking. As initial marking for N ′, we consider the marking M∅ with M∅(p) = 0 for all p.

Formally, the places of N ′ are

P ′ =
⋃

i∈[1..2n−1]

Bi ∪ Ei ∪ Li .

Here, Ei = {ep
i | p ∈ P} and Bi = {bp

i | p ∈ P} are 2n− 1 copies of the places of the given

BPP net. The computation σi or ρi is executed on the places Ei, which will hold the

target marking M ′
i or Mi+1 reached after the execution. The places Bi remember the initial

marking of the replica and there are no transitions that take tokens from them. The places

Li record occurrences of ai and of symbols from Σi, depending on whether i is odd or even.

For all i ∈ [1..n], we have L2i−1 = {l2i−1}. For all i ∈ [1..n− 1], we set L2i = {la2i | a ∈ Σi}

otherwise. The transitions are

T ′ =
⋃

i∈[1..2n−1]

TCi ∪ TEi .
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The TCi = {tcp
i | p ∈ P} populate Ei and Bi. The transitions in TEi =

{
tet

i

∣
∣ t ∈ T

}

together with Ei form a replica of the BPP net. The flow relation F ′ is defined as follows,

where numbers omitted are zero:

(1) For all i ∈ [1..2n− 1], p ∈ P , F ′(tcp
i , e

p
i ) = F ′(tcp

i , b
p
i ) = 1.

(2) For all i ∈ [1..2n− 1], p ∈ P , t ∈ T , F ′(tet
i, e

p
i ) = F (t, p) and F ′(ep

i , te
t
i) = F (p, t).

(3) For all i ∈ [1..n], t ∈ T with λ(t) = ai, F
′(tet

2i−1, l2i−1) = 1.

(4) For all i ∈ [1..n], t ∈ T with λ(t) = a ∈ Σi, F
′(tet

2i, l
a
2i) = 1

The Presburger formula wrt. the initial and final markings M0 and Mf of N has the

places in P ′ as variables. It takes the shape

ΨM0

Mf
(P ′) =Ψ1(P ′) ∧ Ψ2(P ′) ∧ Ψ3(P ′) ∧ Ψ4(P ′) ∧ ΨM0

5 (P ′) ∧ Ψ
Mf

6 (P ′) ,

where

Ψ1(P ′) =
∧

i∈[1..2n−2]

∧

p∈P

e
p
i = b

p
i+1

Ψ2(P ′) =
∧

i∈[1..n−1]

∧

p∈P

(ep
2i < c → b

p
2i 6 e

p
2i)

Ψ3(P ′) =
∧

i∈[1..n]

l2i−1 > 0

Ψ4(P ′) =
∧

i∈[1..n−1]

∧

a∈Σi

la2i > 0

ΨM0
5 (P ′) =

∧

p∈P

b
p
1 = M0(p)

Ψ
Mf

6 (P ′) =
∧

p∈P

(ep
2n−1 < c → e

p
2n−1 >Mf (p)) .

Formula Ψ1 states that σi ends in the marking M ′
i that ρi started from, and similarly ρi ends

in Mi+1 that σi+1 started from. Formula Ψ2 states the required 6c relation. To make sure

we found letter ai, we use Ψ3. With Ψ4, we express that all letters from Σi have been seen.

Conjunct ΨI
5 says that the places bp

1 have been initialized to the value given by the initial

marking I. Formula ΨF
6 states the condition on covering the final marking. The correctness

of the construction is the next lemma. Note that the transitions TCi are always enabled.

Therefore, we can start in N ′ from the initial marking M∅ that assigns zero to every place.

◮ Proposition 30. There are σ′ and M ′ so that M∅[σ′〉M ′ in N ′ and M ′ |= ΨM0

Mf
if and

only if (N,M0,Mf ) admits a p-witness.

Proof. Assume a p-witness M1, . . . ,M2n. We construct a run M∅[σ′〉M ′ of N ′ with

M ′ |= ΨM0

Mf
as follows:

σ′ = γ1α1γ
′
1β1γ2α2γ

′
2β2 . . . γnαnγ

′
nβn ,

where the αi corresponds to σi executed on the places E2i−1 by using the transitions in

TE2i−1 (i.e. if a transition t ∈ T is used in σi, then the transition tet
2i−1 ∈ TE2i−1 is used

in αi). Similarly, the βi correspond to the ρi executed on E2n using transitions in TE2n.

The γi and γ′
i populate the set of places Ei accordingly: γ1 produces M1(p) many tokens

on each place ep
1 of E1 using the transition in TC1. For i > 1, γi produces M2i−1(p) many

tokens on each place ep
2i−1 of E2i−1, and γ′

i produces M2i(p) many tokens on each place ep
2i
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of E2i. As a by-product, the places in each Bi are also populated. It is easy to check that

the marking M ′ with M∅[σ′〉M ′ indeed satisfies ΨM0

Mf
.

For the other direction, assume that a computation M∅[σ′〉M ′ with M ′ |= ΨM0

Mf
is given.

First, observe that the transitions in TCi and TEi are not dependent on each other and

hence can be independently fired. Furthermore, for i 6= j, the transitions in TEi and TEj

are independent of each other. Therefore, we may assume that in σ′, the copy transitions

in TC =
⋃

i∈[1..2n−1] TCi are fired first, then the transition in TE1 followed by transition in

TE2 and so on. All together, we may assume that the computation is of the form

M∅[σ′′.σ′
1. · · · .σ′

2n−1〉M ′ ,

where σ′′ = πTC(σ′) and σ′
i = πTEi

(σ′) for all i ∈ [1..2n−1] Note that for each i ∈ [1..2n−1],

the transition sequence σ′
i in N ′ induces a transition sequence αi in the original net N by

using transition t ∈ T instead of tet
i ∈ TEi.

The initial phase σ′′ populates each Ei with some initial marking. This initial marking

is also copied to the places Bi, and these places are not touched during the rest of the

computation. We may obtain a marking Ji of N for each i ∈ [1..2n− 1] by Ji(p) = M ′(bp
i ).

For each i ∈ [1..2n − 1], we obtain a marking Ki of N by considering the assignment of

tokens to the places of Ei by M ′, i.e. Ki(p) = M ′(ep
i ).

We claim that M0,K1,K2, . . .K2n−1 is the required p-witness. To argue that they indeed

satisfy the Properties (1) to (4), we use the fact that Ji[σ
′
i〉Ki as well as M ′ |= ΨM0

Mf
.

(a) Since M ′ |= ΨM0

5 , we have J1 = M0.

(b) Since M ′ |= Ψ
Mf

6 , we have K2n−1 6c Mf .

(c) Since M ′ |= Ψ1, we have Ji+1 = Ki.

(d) Since M ′ |= Ψ2, we have J2i 6
c K2i for all i ∈ [1..n[.

(e) Since M ′ |= Ψ3, we have for all i ∈ [1..n], ai � λ(σ′
2i−1).

(f) Since M ′ |= Ψ4, we have for all i ∈ [1..n[, for all a ∈ Σi, a� λ(σ2i).

We conclude that Property (4) holds using (a) and (b). We conclude Property (2), ai � λ(σi),

using (e) and Property (3), πΣi
(wΣ) � λ(ρi), using (f). Finally, (b) and (d) yields the

required Property (3). ◭

6 SRE Inclusion in Upward Closure

Rather than computing the upward closure of a Petri net language we now check whether a

given SRE under-approximates it. Formally, the problem is defined as follows.

SRE Inclusion in Upward Closure (SREU)

Given: A Petri net instance (N,M0,Mf), an SRE sre.

Decide: L(sre) ⊆ L(N,M0,Mf)↑?

6.1 Petri Nets

◮ Theorem 31. SREU is EXPSPACE-complete for Petri nets.

The EXPSPACE lower bound is immediate by hardness of coverability for Petri nets and can

be proven similar to Lemma 18. The upper bound is due to the following fact: We only need

to check whether the set of minimal words in the language of the given SRE is included in
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the upward closure of the Petri net language. Note that the minimal word of a product can

be computed as follows:

min(a) = a min(p.p′) = min(p).min(p′)

min(a+ ε) = ε min(Γ∗) = ε .

For an SRE sre = p1 + . . . + pn, we have that the set of minimal words is a subset of

{min p1, . . . ,min pn}. We have that

L(sre) ⊆ L(N,M0,Mf)↑ iff min pi ∈ L(N,M0,Mf )↑ for all i ∈ [1..n] .

For each product, the membership check min pi ∈ L(N,M0,Mf ) ↑ can be reduced in poly-

nomial time to coverability in Petri nets. Since the number of minimal words in the SRE

language is less than the size of the SRE, and coverability is well-known to be in EXPSPACE

[40], we obtain our EXPSPACE upper bound.

6.2 BPP Nets

◮ Theorem 32. SREU is NP-complete for BPP nets.

As before, the hardness is by a reduction of the coverability problem for BPP nets. For the

upper bound, the algorithm is similar to the one for checking the inclusion of an SRE in the

downward closure of a BPP language.

Proof. To check L(sre) ⊆ L(N,M0,Mf) ↑, it is sufficient to check L(p) ⊆ L(N,M0,Mf ) ↑

for each product in sre. Consider one such product p. The inclusion L(p) ⊆ L(N,M0,Mf )↑

holds iff the minimal word of L(p), say min p = a1 . . . an, belongs to L(N,M0,Mf) ↑. This

in turn holds iff one of its subwords is in L(N,M0,Mf). We check this by deciding whether

a reachable marking M in a different net N ′ satisfies a Presburger formula Ψ.

We describe the BPP net N ′ and the Presburger formula Ψ that together characterize

the subwords of min(p) included in the language of the BPP net. Net N ′ is constructed

similar to the net N ′ from Section 5.2. We have two copies of the places for each i ∈ [1..n],

the places Bi hold a copy of the guessed marking and Ei provides a copy ep
i of the BPP net

places p. Additionally for each i we have a place Li = {li}. The transitions TCi populate

the copy Ei of the BPP net and store the same marking in Bi. The transitions TEi contain

a copy tet
i of each BPP net transition t. To check for a subword of a1 . . . an, in each stage

i we only enable transitions t that are either labeled by ε or ai, i.e. for all p ∈ P , t ∈ T , if

λ(t) = ε or λ(t) = ai we have F ′(tet
i, e

p
i ) = F (t, p) and F ′(ep

i , te
t
i) = F (p, t). We also count

the number of times a transition labeled ai is executed using place li, i.e. for all t ∈ T such

that λ(t) = ai, we let F ′(tet
i, li) = 1.

Now the required Presburger formula Ψ — apart from checking that (1) the net starts

with the initial marking, (2) covers the final marking, (3) the guessed marking in each stage

is the same as the marking reached in the previous stage — also checks whether in each

stage at most one non-epsilon transition is used,
∧

i∈1..n li 6 1. This guarantees we have

seen a subword of a1 . . . an. The initial marking M∅ is one that assigns zero to all places.

It is easy to see that L(p) ⊆ L(N,M0,Mf)↑ iff there is a computation M∅[σ〉M in N ′ such

that M |= Ψ. ◭

7 Being Upward/Downward Closed

We now study the problem of deciding whether a Petri net language actually is upward

or downward closed, i.e. whether the closure that we can compute is actually a precise
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representation of the system’s behavior. Formally, the problems BUC and BDC are defined

as follows.n

Being upward closed (BUC)

Given: A Petri net instance (N,M0,Mf).

Decide: L(N,M0,Mf) = L(N,M0,Mf)↑?

Being downward closed (BDC)

Given: A Petri net instance (N,M0,Mf).

Decide: L(N,M0,Mf) = L(N,M0,Mf)↓?

◮ Theorem 33. BUC and BDC are decidable for Petri nets.

Note that L(N,M0,Mf ) ⊆ L(N,M0,Mf)↑ and L(N,M0,Mf ) ⊆ L(N,M0,Mf )↓ trivially

hold. In both cases, it remains to decide the converse inclusion. Now note that

L(N,M0,Mf) ↑ (resp. L(N,M0,Mf) ↓) is a regular language for which we can construct

a generating FSA by Theorem 1 (resp. using [22]).

To prove Theorem 33 it is thus sufficient to show how to decide L(A) ⊆ L(N,M0,Mf)

for any given FSA A. This regular inclusion should be a problem of independent interest.

Containing a regular language

Given: A Petri net instance (N,M0,Mf), FSA A.

Decide: L(A) ⊆ L(N,M0,Mf)?

◮ Theorem 34. L(A) ⊆ L(N,M0,Mf) is decidable.

To prove this theorem, we rely on a result of Esparza et. al [26] that involves the traces

of an FSA (resp. Petri net), labelings of computations that start from the initial state

(resp. initial marking), regardless of whether they end in a final state (resp. covering marking).

For a finite automaton A, we define

T (A) =
{
w ∈ Σ∗ | qinit

w
−→ q for some q ∈ Q

}
.

Similarly, for a Petri net, we define

T (N,M0) = {w ∈ Σ∗ | ∃σ ∈ T ∗ : λ(σ) = w,M0[σ〉M for some marking M} .

Note that both languages are necessarily prefix closed, e.g. if w ∈ L(A) for some FSA A,

then for any prefix v of v, we have v ∈ L(A).

◮ Theorem 35 ([26]). The inclusion T (A) ⊆ T (N,M0) is decidable.

The algorithm constructs a computation tree of A and N . This tree determinizes N in that

it tracks sets of incomparable markings reachable with the same trace. The construction

terminates if either the set of markings becomes empty and the inclusion fails or (the au-

tomaton deadlocks or) we find a set of markings that covers a predecessor and the inclusion

holds. The latter is guaranteed to happen due to the well-quasi ordering (wqo) of sets of

markings. This dependence on wqos does not allow us to derive a complexity result.

We now show how to reduce checking the inclusion L(A) ⊆ L(N,M0,Mf) to deciding

an inclusion among trace languages. Theorem 35 can be used to decide this inclusion.

Let (N,M0,Mf) be the Petri net instance of interest, and let A be the given FSA. As

language L(N,M0,Mf) is not prefix-closed in general, we consider the zero marking M∅ as
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the new final marking. This yields a prefix-closed language with T (N,M0) = L(N,M0,M∅),

since now all valid firing sequences give a word in the language, and prefixes of valid firing

sequences are again valid firing sequences. We still need to take the original final marking

Mf into account. To do so, we modify the net by adding a new transition that can only be

fired after Mf has been covered. Let a 6∈ Σ be a fresh letter. Let N.a be the Petri net that

is obtained from N and the given final marking Mf by adding a new transition tfinal that

consumes Mf (p) many tokens from every place p of N and that is labeled by a. For the

automaton, we use a similar trick. Let A.a be an automaton for L(A).a that is reduced in

the sense that the unique final state is reachable from every state.

◮ Lemma 36. L(A) ⊆ L(N,M0,Mf) holds iff T (A.a) ⊆ T (N.a,M0) holds.

Proof. Assume the first inclusion holds and consider a word v from T (A.a). We have to

show membership of v in T (N.a,M0). As the unique final state of A.a is reachable from

every state, v is a prefix of some word in the language L(A).a, say w.a, where w stems

from L(A). The assumed first inclusion now yields w ∈ L(N,M0,Mf). Thus, there is a

w-labeled computation M0[σ〉M of N with M > Mf . We obtain that M0[σ.tfinal〉M
′ is a

valid computation of N.a, thus, w.a = λ(w.tfinal ) ∈ T (N.a,M0). Since trace languages are

prefix closed and v is a prefix of w.a, we obtain v ∈ T (N.a,M0) as desired.

Assume the second inclusion holds and consider a word w from L(A). The task is to prove

membership of w in L(N,M0,Mf ). To do so, note that w.a ∈ L(A).a ⊆ T (A.a). By the

assumption, we have w.a ∈ T (N.a,M0). Thus, there is a valid computation M0[σ.tfinal 〉M ′

of N.a with λ(σ.tfinal) = w.a. (Here, we have used that tfinal is the only a-labeled transition).

Since w ∈ L(A) ⊆ Σ∗, and a 6∈ Σ, we have that σ does not contain an occurrence of tfinal ,

so M0[σ〉M is a valid computation of N . As tfinal could be fired in M , we have M > Mf

and σ is indeed a covering computation in N . We conclude λ(σ) = w ∈ L(N,M0,Mf) as

desired. ◭

Combining Lemma 36 and Theorem 35 yields the proof of Theorem 34, which in turn proves

Theorem 33: Given an FSA A an a Petri net instance (N,M0,Mf) for which we should

decide L(A) ⊆ L(N,M0,Mf ), we construct N.a and A.a, and apply Theorem 35 to decide

T (A.a) ⊆ T (N.a,M0), which is equivalent to deciding L(A) ⊆ L(N,M0,Mf) by Lemma 36.

8 Conclusion

We considered the class of Petri net languages with coverability as the acceptance condition

and studied the problem of computing representations for the upward and downward closure.

For the upward closure of a Petri net language, we showed how to effectively obtain an

optimal finite state representation of size at-most doubly exponential in the size of the

input. In the case of downward closures, we showed an instance for which the minimum size

of any finite state representation is at-least non-primitive recursive.

To tame the complexity, we considered two variants of the closure computation problem.

The first restricts the input to BPP nets, which can be understood as compositions of

unboundedly many finite automata. For BPPs, we showed how to effectively obtain an

optimal finite state representation of size at-most exponential in the size of input, for both

the upward and the downward closure of the language.

The second variant takes as input a simple regular expression (SRE), which is meant

to under-approximate the upward or downward closure of a given language. For Petri net

languages, we found an optimal algorithm that uses at-most exponential space to check
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whether a given SRE is included in the upward/downward closure. In the case of BPP nets,

we showed that this problem is NP-complete.

Finally, we showed that, given a Petri net, deciding whether its language actually is up-

ward or downward closed is decidable. If the check is successful, the finite state descriptions

we compute are precise representations of the system behavior.

An interesting problem for future work is the complexity of checking separability by

piecewise-testable languages (PTL) and the size of separators. A PTL is a Boolean combi-

nation of upward closures of single words. PTL-separability takes as input two languages

L1 and L2 and asks whether there is a PTL S, called the separator, that includes L1 and

has an empty intersection with L1. Taking a verification perspective, the separator is an

over-approximation of the system behavior L1 that is safe wrt. the bad behaviors in L1. For

deterministic finite state automata, PTL-separability was shown to be decidable in polyno-

mial time by Almeida and Zeitoun [3], a result that was generalized to non-deterministic

automata in [12]. Recently [13], Czerwiński, Martens, van Rooijen, Zeitoun, and Zetzsche

have show that, for full trios, computing downward closures and deciding PTL-separability

are recursively equivalent. A full trio is a class of languages that is closed under homo-

morphisms, inverse homomorphisms, and regular intersection. Petri net languages with

coverability or reachability as the acceptance condition satisfy these requirements. Hence,

we know that PTL-separability is decidable for them [22]. The aforementioned problems,

however, remain open.
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