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Petri Net Coverability Languages and
their Closures
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Coverability Language
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(N,M0,Mf) Petri net with initial and final marking

Coverability language

L
(
N,M0,Mf

)
=

{
λ(σ)

∣∣ M0[σ⟩M,M ⩾ Mf
}
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(
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)
=

{
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}
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Subword relation

v⪯ w iff v obtained from w by deleting letters
iff w obtained from v by inserting letters

Upward closure

L↑= {w | ∃v ∈ L : v⪯ w}

Downward closure

L↓= {w | ∃v ∈ L : w⪯ v}

In the example: L
(
N,M0,Mf

)
↑=

{
ak

∣∣ k ⩾ 8
}

L
(
N,M0,Mf

)
↓=

{
ak

∣∣ k ⩽ 8
}
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(
N,M0,Mf
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Computing the Upward Closure

Computing the Upward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↑.

Theorem
Upper bound: One can compute an FSA of doubly
exponential size representing the upward closure in doubly
exponential time.

Lower bound: This is optimal.
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Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the
upward closure in doubly exponential time.

6



Computing the Upward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the
upward closure in doubly exponential time.

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

6



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

Prove f(ℓ) ⩽ 22O(n·log n)

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

Prove f(ℓ) ⩽ 22O(n·log n)

Show f(i+ 1) ⩽ (2nf(i))i+1 + f(i)
7
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2nf(i)
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2nd case: Some place, say i+ 1, exceeds 2n · f(i):

Treat first part as in 1st case
Replace second part by i-covering, i-bounded
computation of length ⩽ f(i)

2nf(i)
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What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care
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Finally:
The minimal words of L

(
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)
↑ have a computation of

length ⩽ f(ℓ) ⩽ 22O(n·log n) .
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Computing the Upward Closure - Upper Bound

Finally:
The minimal words of L

(
N,M0,Mf

)
↑ have a computation of

length ⩽ f(ℓ) ⩽ 22O(n·log n) .

FSA can simulate the net for f(ℓ) steps to accept them (and
their upward-closure)
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Computing the Upward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the upward closure
cannot be represented by an FSA of less than doubly
exponential size.
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(including zero tests!)

Using this idea, we construct for each n ∈ N a Petri net with

L
(
N(n),M0,Mf

)
=

{
a22
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.
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L
(
N(n),M0,Mf

)
↑=

{
ak

∣∣∣ k ⩾ 22n
}
.
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Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L
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Computing the Downward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↓.

Theorem
Upper bound: One can compute an FSA of non-primitive
recursive size representing the downward closure (in
non-primitive recursive time).

Lower bound: This is optimal.
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Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.
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Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net
can be seen as finite automaton KMT

Its language is a subset of the downward closure,
L
(
N,M0,Mf

)
⊆ L(KMT) ⊆ L

(
N,M0,Mf

)
↓

L(KMT)↓= L
(
N,M0,Mf

)
↓

Its size might be non-primitive recursive
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Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.
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Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to
labeled Petri nets:

∀n, x ∈ N ∃
(
N(n),M(x)

0 ,Mf
)
polynomial in (n+ x) such that

L
(
N(n),M(x)

0 ,Mf
)
=

{
ak

∣∣∣ k ⩽ Acker(n, x)
}
= L

(
N(n),M(x)

0 ,Mf
)
↓
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in0 tcp0 out0
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Simple Regular Expression

Simple regular expression

sre ::= p p sre+ sre
p ::= a p (a+ ε) p Γ∗ p p.p

where Γ ⊆ Σ

Known:

Downward and upward closures can be described by SREs

17



SRE in Downward Closure

SRE in Downward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↓ ?
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SRE in Downward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↓ ?

Theorem
SRE in Downward Closure is EXPSPACE-complete.
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SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.
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Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

SRE is a choice among products

sre ::= p p sre+ sre

Show inclusion for each product separately

p ::= a p (a+ ε) p Γ∗ p p.p

Problem: Need to enforce that for each word in Γ∗, a
covering computation exists
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SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain
unboundedness problem decidable
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Theorem (Demri 2013)
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EXPSPACE-complete.
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SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain
unboundedness problem decidable

Theorem (Demri 2013)
The Simultaneous Unboundedness Problem for Petri Nets is
EXPSPACE-complete.

Simultaneous Unboundedness Problem for Petri Nets
Given: Petri net N, marking M0, set of places X ⊆ P
Decide: ∀n ∈ N ∃M0[σ⟩M with M(p) ⩾ n∀p ∈ X?
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SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately

For each expression Γ∗ in p, add a place that tracks
occurrence of all symbols in Γ

(also track the rest of p)

Check whether the places for the Γ∗ are simultaneously
unbounded
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SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.
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SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

Label all transitions by ε

Note: L
(
N,M0,Mf

)
= {ε} iff Mf coverable, ∅ else

L(∅∗) = {ε} ⊆ L
(
N,M0,Mf

)
↓ iff Mf coverable
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SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?
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SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?

Theorem
SRE in Upward Closure is EXPSPACE-complete.
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SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?

Theorem
SRE in Upward Closure is EXPSPACE-complete.

Note:
Lower bound (EXPSPACE-hardness) as for SRE in
Downward Closure
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SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.
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SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

Check this using a coverability query in a modified net
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Being DC/UC

Being Downward/Upward Closed
Given: Petri net (N,M0,Mf).
Decide: L

(
N,M0,Mf

)
= L

(
N,M0,Mf

)
↓ /↑ ?
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REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?
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REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?

Theorem
Regular lang. included in PN coverability lang. is decidable.

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N,M0) and FSA A.

T (A) ⊆ T (N,M0) is decidable.

26



Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable
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T (B) ⊆ T (N′,M0) is decidable

where T (B) =
{
w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.
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w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

Lemma
L(A) ⊆ L

(
N,M0,Mf

)
iff T (A.a) ⊆ T (N.a,M0).
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Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable

where T (B) =
{
w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

Lemma
L(A) ⊆ L

(
N,M0,Mf

)
iff T (A.a) ⊆ T (N.a,M0).

where a fresh letter

A.a reduced FSA for L(A).a

N.a = N plus a-labeled transition tf consuming Mf 27



BPP Nets



Results

Petri nets

Compute UC Doubly exponential∗

Compute DC Non-prim. rec.∗

SRE in DC EXPSPACE-compl.

SRE in UC EXPSPACE-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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BPP Nets - Negative Example

In a BPP net, each transition consumes at most one token.

2

2

2
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BPP Nets - Positive Example

In a BPP net, each transition consumes at most one token.

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2
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Results

Petri nets

Compute UC Doubly exponential∗

Compute DC Non-prim. rec.∗

SRE in DC EXPSPACE-compl.

SRE in UC EXPSPACE-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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Results

Petri nets BPP nets

Compute UC Doubly exponential∗ Exponential∗

Compute DC Non-prim. rec.∗ Exponential∗

SRE in DC EXPSPACE-compl. NP-compl.

SRE in UC EXPSPACE-compl. NP-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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Results

Petri nets BPP nets
Techniques for

upper bound lower bound

Compute UC Doubly exponential∗ Exponential∗ Unfoldings Initial ex.

Compute DC Non-prim. rec.∗ Exponential∗ Unfoldings Initial ex.

SRE in DC EXPSPACE-compl. NP-compl. Presburger Coverability

SRE in UC EXPSPACE-compl. NP-compl. Coverability Coverability

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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Thank you!
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Questions?
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