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Abstract
We investigate the languages recognized by well-structured transition systems (WSTS) with up-
ward and downward compatibility. Our first result shows that, under very mild assumptions,
every two disjoint WSTS languages are regular separable: There is a regular language containing
one of them and being disjoint from the other. As a consequence, if a language as well as its
complement are both recognized by WSTS, then they are necessarily regular. In particular, no
subclass of WSTS languages beyond the regular languages is closed under complement. Our sec-
ond result shows that for Petri nets, the complexity of the backwards coverability algorithm yields
a bound on the size of the regular separator. We complement it by a lower bound construction.

2012 ACM Subject Classification:
Theory of computation → Models of computation
Theory of computation → Formal languages and automata theory
Theory of computation → Regular languages
Theory of computation → Parallel computing models

1 Supported by the Polish National Science Centre under grant 2016/21/D/ST6/01376.
2 Partially supported by the European Research Council (ERC) project Lipa under the EU Horizon 2020

research and innovation programme (grant agreement No. 683080).
3 Partially supported by the Indo-French project AVeCSo, the Infosys Foundation, and DST-VR Project

P-02/2014.

ar
X

iv
:1

70
2.

05
33

4v
4 

 [
cs

.F
L

] 
 5

 J
ul

 2
01

8

mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0002-6169-868X
mailto:sl@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
mailto:roland.meyer@tu-bs.de
https://orcid.org/0000-0001-8495-671X
mailto:s.muskalla@tu-bs.de
https://orcid.org/0000-0001-9195-7323
mailto:kumar@cmi.ac.in
mailto:p.saivasan@tu-bs.de


Keywords and Phrases:
regular separability, wsts, coverability languages, Petri nets

Acknowledgements:
We thank an anonymous referee for pointing out Part (2) of Corollary 8.
We thank Sylvain Schmitz for helpful discussions.

1 Introduction

We study the languages recognized by well-structured transition systems (WSTS) [23, 24, 5,
1, 27]. WSTS form a framework subsuming several widely-studied models, like Petri nets [22]
and their extensions with transfer [21], data [53], and time [4], graph rewriting systems [35],
depth-bounded systems [46, 56, 20], ad-hoc networks [3], process algebras [13], lossy channel
systems (LCS) [5], and programs running under weak memory models [6, 7]. Besides their
applicability, the importance of WSTS stems from numerous decidability results. Finkel
showed the decidability of termination and boundedness [23, 24]. Abdulla came up with a
backward algorithm for coverability [5], for which a matching forward procedure was found
only much later [30]. Several simulation and equivalence problems are also decidable for
WSTS [27]. The work on WSTS even influenced algorithms for regular languages [57] and
recently led to the study of new complexity classes [54].

Technically, a WSTS is a transition system equipped with a quasi order on the configura-
tions that satisfies two properties. It is a well quasi order and it is (upward or downward)
compatible with the transition relation in the sense that it forms a simulation relation. For
our language-theoretic study, we assume the transitions to be labeled and the WSTS to
be equipped with sets of initial and final configurations. The set of final configurations
is supposed to be upward or downward closed wrt. the quasi order of the WSTS. When
specialized to VAS, this yields the so-called covering languages.

For WSTS languages, we study the problem of regular separability. Given two languages
L and K over the same alphabet, a separator is a language R that contains one of the
languages and is disjoint from the other, L ⊆ R and R ∩ K = ∅. The separator is regular
if it is a regular language. Separability has recently attracted considerable attention. We
discuss the related work in a moment.

Disjointness is clearly necessary for regular separability. We show that for most WSTS,
disjointness is also sufficient. Our main result is the following:

Any two disjoint WSTS languages are regular separable.

The only assumption we need is that, in the case of upward-compatible WSTS resp. downward-
compatible WSTS, one of the WSTS is finitely branching resp. deterministic.

The proof proceeds in two steps. In the first step, we link inductive invariants from
verification [42] to separability in formal languages. More precisely, we show that any
inductive invariant (of the product of the given systems) gives rise to a regular separator –
provided it can be finitely represented. We do not even need WSTS here, but only upward
compatibility. An inductive invariant is a set of configurations that contains the initial ones,
is closed under the transition relation, and is disjoint from the final configurations.

In a second step, we show that finitely-represented invariants always exist. To this end,
we use ideal completions from lattice theory [36, 9, 26]. The insight is that, in a WSTS,
any inductive invariant can be finitely represented by its ideal decomposition. This ideal
decomposition yields states in the ideal completion of the WSTS, and the first step applies.
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The result has theoretical as well as practical applications. On the theoretical side, recall
the following about Petri nets from [48, 47]: Every two Petri net covering languages that are
complements of each other are necessarily regular. The result not only follows from ours,
but the same applies to other classes of WSTS, for instance to the languages of LCS, and
actually to all WSTS languages fulfilling the above-mentioned assumptions. For instance, if
the covering language of a Petri net is the complement of the language of an LCS, they are
necessarily regular; and if the languages are just disjoint, they are regular separable.

The result is also important in verification. In 2016 and 2017, the Software Verification
Competition was won by so-called language-theoretic algorithms [32]. These algorithms
replace the classical state-space search by proofs of language disjointness (between a refinement
of the control-flow language and the language of undesirable behavior). Regular separators
are precisely what is needed to prove disjointness. In this setting, regular separators seem to
play the role that inductive invariants play for safety verification [42]. Indeed, our results
establishes a first link between the two.

We accompany our main result by two more findings. The first ones are determinization
results that broaden the applicability of our results. For upward compatibility, we show that
every finitely branching WSTS can be determinized. For downward compatibility, we show
that every WSTS can be determinized if the quasi order is an ω2-wqo. In fact all examples
from the literature are ω2-WSTS, hence they determinize, and in consequence satisfy the
assumptions of our results.

Our second accompanying result is on the size of regular separators for Petri nets. We
show how to construct a regular separator in the form of a non-deterministic automaton of
size triply exponential in size of the given nets. With the main result at hand, the result
amounts to giving a bound on the size of a finite representation of an inductive invariant. As
inductive invariant, we use the complement of the configurations backward reachable from
the final ones. The estimation starts from a result on the size of a basis for the backward
reachable configurations [39] and reasons about the complementation. There is a matching
lower bound for deterministic automata.

Outline. Section 2 recalls the basics on WSTS. The determinization results can be found
in Section 3. They prepare the main result in Section 4. The state complexity of separators
for Petri nets is in Section 5. Section 6 concludes the paper.

Related Work. Separability is a widely-studied problem in Theoretical Computer Science.
A classical result says that every two co-recursively enumerable languages are recursively
separable, i.e. separable by a recursive language [29]. In the area of formal languages,
separability of regular languages by subclasses thereof was investigated most extensively
as a decision problem: Given two regular languages, decide whether they are separable
by a language from a fixed subclass. For the following subclasses, among others, the
separability problem of regular languages is decidable: The piecewise-testable languages,
shown independently in [18] and [50], the locally testable and locally threshold-testable
languages [49], the languages definable in first-order logic [52], and the languages of certain
higher levels of the first-order hierarchy [51].

Regular separability of classes larger than the regular languages attracted little attention
until recently. As a remarkable example, already in the 70s, the undecidability of regular
separability of context-free languages has been shown [55] (see also a later proof [33]); then
the undecidability has been strengthened to visibly pushdown languages [37] and to languages
of one-counter automata [17].
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An intriguing problem, to the best of our knowledge still open, is the decidability of
regular separability of Petri net languages, under the proviso that acceptance is by reaching a
distinguished final configuration. As for now, positive answers are known only for subclasses
of VAS languages: PSPACE-completeness for one-counter nets (i.e. one-dimensional vector
addition systems with states) [17], and elementary complexity for languages recognizable by
Parikh automata (or, equivalently, by integer vector addition systems) [14]. Finally, regular
separability of commutative closures of VAS languages has been shown to be decidable
in [15]. As a consequence of this paper, regular separability of two VAS languages reduces
to disjointness of the same two VAS languages (and is thus trivially decidable), given that
acceptance is by covering a distinguished final configuration.

Languages of upward-compatible WSTS were investigated e.g. in [31], where interesting
closure properties have been shown, including a natural pumping lemma. Various subclasses
of languages of WSTS have been considered, e.g. in [19, 2, 44].

2 Well structured transition systems

Well Quasi Orders. A quasi order (X,�), i.e. a set X equipped with a reflexive and
transitive binary relation �, is called well quasi order (wqo) if for every infinite sequence
x1, x2, . . . ∈ X there are indices i < j such that xi � xj . It is folklore that (X,�) is wqo
iff it admits neither an infinite descending sequence (i.e. it is well-founded) nor an infinite
antichain (i.e. it has the finite antichain property).

We will be working either with wqos, or with ω2-wqos, a strengthening of wqos. We
prefer not to provide the technical definition of ω2-wqo (which can be found, e.g in [43]), as
it would not serve our aims. Instead, we take the characterization provided by Lemma 2
below as a working definition. The class of ω2-wqos provides a framework underlying the
forward WSTS analysis developed in [25, 26, 30]. Both classes, namely wqos and ω2-wqos,
are stable under various operations like taking the Cartesian product, the lifting to finite
multisets (multiset embedding), and the lifting to finite sequences (Higman ordering).

A subset U ⊆ X is upward closed with respect to � if u ∈ U and u′ � u implies u′ ∈ U .
Similarly, one defines downward closed sets. Clearly, U is upward closed iff X \U is downward
closed. The upward and downward closure of a set U ⊆ X are defined as:

↑U = {x ∈ X | ∃u ∈ U, x � u} and ↓U = {x ∈ X | ∃u ∈ U, x � u} .

The family of all upward-closed resp. downward-closed subsets of X we denote by P↑(X)
resp. P↓(X). If (X,�) is a wqo then every upward closed set is the upward closure of a finite
set, namely of the set of its minimal elements. This is not the case for downward closed
set; we thus distinguish a subfamily P↓fin(X) ⊆ P↓(X) of finitary downward closed subsets
of X, i.e. downward closures of finite sets. In general, these are not necessarily finite sets
(e.g. consider the set N ∪ {ω} with ω bigger than all natural numbers, and the downward
closure of {ω}). The set P↓fin(X), ordered by inclusion, is a wqo whenever (X,�) is:

I Lemma 1.
(
P↓fin(X),⊆

)
is a wqo iff (X,�) is a wqo.

This property does not necessarily extend to the whole set P↓(X) of all downward closed
subsets of X. As shown in [34]:

I Lemma 2.
(
P↓(X),⊆

)
is a wqo iff (X,�) is an ω2-wqo.

As a matter of fact, [34] considers the reverse inclusion order on upward closed sets, which is
clearly isomorphic to the inclusion order on downward closed sets.
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Labeled Transition Systems. In the sequel we always fix a finite alphabet Σ. A labeled
transition system (LTS) W = (S, T, I, F ) over Σ consists of a set of configurations S, a set
of transitions T ⊆ S × Σ× S, and subsets I, F ⊆ S of initial and final configurations. We
write s a−→ s′ instead of (s, a, s′) ∈ T . A path from configuration s to configuration s′ over a
word w = a0 · · · ak−1 is a sequence of configurations s = s0, s1, . . . , sk−1, sk = s′ such that
si

ai−→ si+1 for all i ∈ {0, . . . , k − 1}. We write s w−→ s′. For a subset X ⊆ S of configurations
and a word w ∈ Σ∗ we write

ReachW(X,w) = {s ∈ S | ∃x ∈ X : x w−→ s} ,

Reach−1
W (X,w) = {s ∈ S | ∃x ∈ X : s w−→ x}

for the set of all configurations reachable (resp. reversely reachable) fromX along w. Note that
we have ReachW(X, ε) = X = Reach−1

W (X, ε). Important special cases will be the set of all
a-successors (resp. a-predecessors) for a ∈ Σ, i.e. configurations reachable along a one-letter
word a, and the configurations reachable from the initial configurations I (resp. reversely
reachable from the final configurations F ):

SuccW(X, a) = ReachW(X, a) ReachW(w) = ReachW(I, w)
PredW(X, a) = Reach−1

W (X, a) Reach−1
W (w) = Reach−1

W (F,w)

satisfying the following equalities for all w ∈ Σ∗ and a ∈ Σ:

ReachW(w.a) = SuccW(ReachW(w), a) (1)
Reach−1

W (a.w) = PredW(Reach−1
W (w), a) . (2)

We also establish the notation for the whole set of (reversely) reachable configurations:

ReachW =
⋃
w∈Σ∗

ReachW(w) Reach−1
W =

⋃
w∈Σ∗

Reach−1
W (w) .

An LTSW = (S, T, I, F ) is finitely branching if I is finite and for every configuration s ∈ S and
each a ∈ Σ there are only finitely many configurations s′ ∈ S such that s a−→ s′. Furthermore,
W is deterministic if it has exactly one initial configuration and for every s ∈ S and each a ∈ Σ
there is exactly one s′ ∈ S such that s a−→ s′. IfW is deterministic, we write s′ = SuccW(s, a)
(resp. s′ = ReachW(w)) instead of {s′} = SuccW(s, a) (resp. {s′} = ReachW(w)).

The language recognized by W, denoted L(W), is the set of words which occur on some
path starting in an initial configuration and ending in a final one, i.e.

L(W) = {w ∈ Σ∗ | ∃i ∈ I, f ∈ F : i w−→ f} .

We call two LTSW,W ′ equivalent if their languages are the same. They are reverse-equivalent
if L(W) = {rev(w) | w ∈ L(W ′)} with rev(a1 . . . ak) = ak . . . a1.

Note that we did not allow for ε-steps in transition systems. Even if ε-steps can be
eliminated by pre-composing and post-composing every transition s a−→ s′ with the reflexive-
transitive closure of ε−→, this transformation does not necessarily preserve finite branching.

Synchronized Products. Consider LTS W = (S, T, I, F ) and W ′ = (S′, T ′, I ′, F ′). Their
synchronized product is the LTS W ×W ′ = (S×, T×, I×, F×) defined as follows: The configu-

5



rations are tuples of configurations, S× = S × S′, and the initial and final configurations are
I× = I × I ′ and F× = F × F ′, respectively. The transition relation is defined by

(s, s′) a−→ (r, r′) in W ×W ′ if s
a−→ r in W

and s′
a−→ r′ in W ′ .

It is immediate from the definition that the language of the product is the intersection of the
languages, i.e. L(W ×W ′) = L(W) ∩ L(W ′). If W and W ′ both are finitely branching, then
so is their product.

Upward-Compatible Well-Structured Transition Systems. Now we define a labeled version
of well-structured transition systems as described in [27], here called upward-compatible
well-structured transition system (UWSTS). We start by defining the more general notions
of quasi ordered LTS and ULTS.

By a quasi-ordered LTS W = (S, T,�, I, F ) we mean an LTS (S, T, I, F ) extended with
a quasi order � on configurations.

An upward-compatible LTS (ULTS) is a quasi-ordered LTS such that the set F of final
configurations F is upward closed4 with respect to �, and the following upward compatibility5
is satisfied: whenever s � s′ and s a−→ r, then s′ a−→ r′ for some r′ ∈ S such that r � r′. In
other words, � is a simulation relation. Upward compatibility extends to words:

I Lemma 3. For w ∈ Σ∗, s � s′ with s w−→ r, we have s′ w−→ r′ for some r′ ∈ S with r � r′.

If the order (S,�) in a ULTS W = (S, T,�, I, F ) is a wqo, we call W a UWSTS.
As F is upward closed, W is equivalent to its downward closure ↓W , obtained from W by

replacing the set I by its (not necessarily finite) downward closure ↓I with respect to �, and
by extending the transition relation as follows: s a−→ r in ↓W if s a−→ r′ in W for some r′ � r.
Note that with respect to the extended transition relation, Succ↓W(X, a) is downward
closed for every X ⊆ S. One easily checks that ↓W still satisfies upward compatibility, and
every word accepted by W is also accepted by ↓W. The converse implication follows by the
following simulation of ↓W by W:

I Lemma 4. Let w ∈ Σ∗. Whenever s � s′ and s w−→ r in ↓W, then s′ w−→ r′ in W for some
r′ ∈ S such that r � r′.

The synchronized product of two ULTS (S, T,�, I, F ) and (S′, T ′,�′, I ′, F ′) is still a
ULTS with respect to the product order �× defined by (x, x′) �× (y, y′) iff x � y and
x′ �′ y′. Indeed, F ×F ′ is upward closed wrt. �× and the transition relation satisfies upward
compatibility. Since the product order of two wqos is again a wqo, the synchronized product
of two UWSTS is a UWSTS.

When � is a ω2-wqo, the UWSTS W is called ω2-UWSTS. When the LTS (S, T, I, F ) is
finitely branching (resp. deterministic), the UWSTS W is called finitely-branching UWSTS
(resp. deterministic UWSTS). In the sequel we speak shortly of UWSTS-languages (resp. ω2-
UWSTS-languages, finitely-branching UWSTS-languages, etc.).

Downward-Compatible Well-Structured Transition Systems. A downward-compatible
well-structured transition system (DWSTS) is defined like its upward-compatible coun-
terpart, with two modifications. First, we assume the set of final configurations F to be

4 Languages defined by upward-closed sets of final configurations are usually called coverability languages.
5 In the terminology of [27], this is strong compatibility.

6



downward closed, instead of being upward closed. Second, instead of upward compatibility,
we require its symmetric variant, namely downward compatibility: Whenever s′ � s and
s
a−→ r, then s′ a−→ r′ for some r′ ∈ S such that r′ � r. In other words, the inverse of � is

a simulation relation. Downward compatibility extends to words, which can been shown
similar to Lemma 3. Symmetrically to the downward closure of a UWSTS, we may define
the upward closure ↑W of a DWSTS W that recognizes the same language.

As above, we also speak of finitely-branching DWSTS, or ω2-DWSTS. We jointly call
UWSTS and DWSTS just WSTS.

Examples of WSTS. Various well known and intensively investigated models of computation
happen to be either an UWSTS or DWSTS. The list of natural classes of systems which are
UWSTS contains, among the others: vector addition systems (VAS) resp. Petri nets and
their extensions (e.g. with reset arcs or transfer arcs); lossy counter machines [10]; string
rewriting systems based on context-free grammars; lossy communicating finite state machines
(aka lossy channel systems, LCS) [12]; and many others. In the first two models listed above
the configurations are ordered by the multiset embedding, while in the remaining two ones
the configurations are ordered by Higman’s subsequence ordering. The natural examples of
UWSTS, including all models listed above, are ω2-UWSTS and, when considered without
ε-transitions, finitely-branching.

DWSTS are less common. A natural source of examples is gainy models, like gainy
counter system machines or gainy communicating finite state machines. For an overview, see
e.g. page 31 of [27].

3 Expressibility

Our proof of regular separability assumes one of the WSTS to be deterministic. In this
section, we show that this is no strong restriction. We compare the languages recognized by
different classes of WSTS, in particular deterministic ones. The findings are summarized in
Theorem 5, where we use ⊆ to say that every language of a WSTS from one class is also the
language of a WSTS from another class; and we use ⊆rev to say that every language of a
WSTS from one class is the reverse of the language of a WSTS from another class.

I Theorem 5. The following relations hold between the WSTS language classes:

ω2-UWSTS ⊆ deterministic UWSTS = finitely-branching UWSTS ⊆ all UWSTS ,
ω2-DWSTS ⊆ deterministic DWSTS ⊆ finitely-branching DWSTS = all DWSTS ,
ω2-UWSTS ⊆rev deterministic DWSTS ,
ω2-DWSTS ⊆rev deterministic UWSTS .

In short, ω2-UWSTS and ω2-DWSTS determinize and reverse-determinize; finitely-branching
UWSTS determinize too; and (unrestricted) DWSTS are equivalent to finitely-branching
DWSTS. In Appendix B, we formulate and prove a series of lemmata which jointly prove
Theorem 5.

4 Regular Separability

We now show our first main results: Under mild assumptions, disjoint DWSTS resp. disjoint
UWSTS are regular separable. Both theorems follow from a technical result that establishes
a surprising link between verification and formal language theory: Every inductive invariant
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(of a suitable product WSTS) that has a finite representation can be turned into a regular
separator. With this, the proofs of regular separability are invariant constructions.

Main Results. We say that two languages L and K over the same alphabet are regular
separable if there is a regular language R that satisfies L ⊆ R and R∩K = ∅. For two WSTS
W and W ′, we say that they are regular separable if so are their languages. Disjointness is
clearly necessary for regular separability. Our first main results show that for most WSTS
disjointness is also sufficient:

I Theorem 6. Every two disjoint DWSTS, one deterministic, are regular separable.

I Theorem 7. Every two disjoint UWSTS, one finitely branching, are regular separable.

The results imply that the complement of a non-regular WSTS language cannot be a WSTS
language. They also show that there is no subclass of WSTS languages beyond the regular
languages that is closed under complement. More formally, for a class of languages C, we
call a language doubly C, if the language as well as its complement are in C. We obtain the
following corollary, generalizing earlier results for Petri net coverability languages [48, 47].

I Corollary 8. (1) Every doubly deterministic DWSTS language resp. every doubly finitely-
branching UWSTS language is regular. (2) No subclass of finitely-branching UWSTS lan-
guages resp. deterministic DWSTS languages beyond REG is closed under complement.

The rest of the section is devoted to the proofs. We will use that the product of two disjoint
WSTS is again a WSTS with the empty language. Whenever the language of a WSTS is
empty, we can find an inductive invariant, a downward-closed set of configurations separating
the reachability set from the final configurations. Given a finite representation for such an
invariant, we show how to turn it into a regular separator, provided one of the WSTS is
deterministic. This is our key technical insight, formulated as Theorem 11 below.

The proof of Theorem 6 follows directly from this result. For Theorem 7, we consider the
ideal completion of an UWSTS, an extended system in which every downward-closed set has
a finite representation. This in particular applies to inductive invariants, as we show in the
form of Proposition 21: Any inductive invariant in the original UWSTS induces an inductive
invariant in the ideal completion that has a finite representation. Combining this result with
Theorem 11 yields the desired proof.

Turning Inductive Invariants into Regular Separators. Inductive invariants are a standard
tool in the safety verification of programs [42]. Technically, an inductive invariant (of a
program for a safety property) is a set of program configurations that includes the initial
ones, is closed under the transition relation, and is disjoint from the set of undesirable states.
The following definition lifts the notion to WSTS (actually to the more general ULTS), where
it is natural to require inductive invariants to be downward-closed.

I Definition 9. An inductive invariant for a ULTS W with configurations S is a downward-
closed set X ⊆ S with the following three properties:

I ⊆ X , (3)
F ∩X = ∅ , (4)
SuccW(X, a) ⊆ X for all a ∈ Σ . (5)

An inductive invariant X is finitely-represented if X = ↓Q for a finite set Q ⊆ S.
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By (3) and (5), the invariant has to contain the whole reachability set. By (4) and (5), it
has to be disjoint from the predecessors of the final configurations:

ReachW ⊆ X , Reach−1
W ∩X = ∅ .

This means every inductive invariant shows language emptiness. Even more, inductive
invariants are complete for proving emptiness, like inductive invariants for programs are
(relatively) complete for proving safety [16].

I Lemma 10. Consider ULTS W. Then L(W) = ∅ iff there is an inductive invariant for W.

For completeness, observe that X = ↓ReachW is an inductive invariant. It is the least
one wrt. inclusion. There is also a greatest inductive invariant, namely the complement of
Reach−1

W . Note that, due to upward compatibility, Reach−1
W is always upward-closed.

Other invariants may have the advantage of being easier to represent. We will be
particularly interested in invariants that are finitely-represented in the sense that they form
the downward closure of a finite set.

Here is the core result. Consider two disjoint ULTS. Any finitely-represented inductive
invariant for the product can be turned into a regular separator. We will comment on the
assumed determinism in a moment.

I Theorem 11. Let W and W ′ be disjoint ULTS, one of them deterministic, such that
W ×W ′ admits a finitely-represented inductive invariant ↓Q. Then W and W ′ are regular
separable by the language of a finite automaton with states Q.

For the definition of the separator, let W = (S, T,�, I, F ) be an arbitrary ULTS and let
W ′ = (S′, T ′,�′, I ′, F ′) be a deterministic one such that their languages are disjoint. Let

W× =W ×W ′ = (S×, T×,�×, I×, F×)

be their synchronized product. By the disjointness of W and W ′ we know that L(W×) = ∅.
Let Q ⊆ S× be a finite set such that ↓Q is an inductive invariant.

We define a finite automaton A with states Q whose language will contain L(W) while
being disjoint from L(W ′). The idea is to over-approximate the configurations of W× by the
elements available in Q. The fact that ReachW× ⊆ ↓Q guarantees that every configuration
(s, s′) ∈ S× has such a representation. Since we seek to approximate the language of W , the
final states only refer to the W-component. Transitions are approximated existentially.

I Definition 12. We define the separating automaton induced by Q to be
A = (Q,→, QI , QF ). A state is initial if it dominates some initial configuration of W×,
QI = {(s, s′) ∈ Q | (i, i′) �× (s, s′) for some (i, i′) ∈ I×} . As final states we take pairs whose
W-component is final, QF = {(s, s′) ∈ Q | s ∈ F} . Finally, the transition relation in A is an
over-approximation of the transition relation in W×:

(s, s′) a−→ (r, r′) in A if (s, s′) a−→ (t, t′) in W× for some (t, t′) �× (r, r′) .

Figure 1 illustrates the construction.
To show separation, we need to prove L(W) ⊆ L(A) and L(A) ∩ L(W ′) = ∅. We begin

with the former. AsW ′ is deterministic, W× contains all computations ofW . Due to upward
compatibility, A over-approximates the computations in W×. Combining these two insights,
which are summarized in the next lemma, yields the result.

I Lemma 13. (1) For every s ∈ ReachW(w) there is some (s, s′) ∈ ReachW×(w). (2) For
every (s, s′) ∈ ReachW×(w) there is some (r, r′) ∈ ReachA(w) with (s, s′) �× (r, r′).
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I Proposition 14. L(W) ⊆ L(A) .

It remains to prove disjointness of L(A) and L(W ′). The key observation is that, due
to determinism, W ′ simulates the computations of A — in the following sense: If upon
reading a word A reaches a state (s, s′), then the unique computation of W ′ will reach a
configuration dominated by s′.

I Lemma 15. For every w ∈ Σ∗ and every (s, s′) ∈ ReachA(w) we have ReachW′(w) �′ s′.

With this lemma we can show disjointness. Towards a contradiction, suppose some word
w satisfies w ∈ L(A) ∩ L(W ′). As w ∈ L(A), there is a configuration (s, s′) ∈ ReachA(w)
with s ∈ F . As w ∈ L(W ′), the unique configuration ReachW′(w) belongs to F ′. With
the previous lemma and the fact that F ′ is upward-closed, we conclude s′ ∈ F ′. Together,
(s, s′) ∈ F×, which contradicts the fact that ↓Q is an inductive invariant, Property (4).

I Proposition 16. L(A) ∩ L(W ′) = ∅ .

Together, Proposition 14 and 16 show Theorem 11. With Theorem 11 at hand, the proof of
regular separability for DWSTS follows easily.

Proof of Theorem 6. Consider an arbitrary DWSTSW = (S, T,�, I, F ) and a deterministic
one W ′ = (S′, T ′,�′, I ′, F ′). We start with the observation that the inversed versions of
W and W ′, namely with the orders �−1 and (�′)−1 and denoted by W−1 and (W ′)−1, are
ULTS. We claim that these ULTS satisfy the assumptions of Theorem 11. The language of
W−1
× =W−1 × (W ′)−1 is empty since the language of W× =W×W ′ is empty and inversion

does not change the language, L(W) = L(W−1) and similar for W ′. Inversion also does not
influence determinism.

It remains to find an inductive invariant of W−1
× that is finitely represented. We claim

that X = ↓−1ReachW−1
×

is a suitable choice. The subscript indicates that the downward
closure is computed relative to the quasi order of W−1

× . As the language of W−1
× is empty,

X is an inductive invariant by Lemma 10. For the finite representation, note that inversion
does not change the transition relation. Hence, W× and W−1

× reach the same configurations,
ReachW−1

×
= ReachW× = Z . With the definition of inversion, X = ↓−1Z = ↑Z holds.

Moreover, ↑Z = ↑min(Z), with minimum and upward closure computed relative to W×.
Since the configurations of W× are well quasi ordered, min(Z) is finite. Another application
of inversion yields X = ↑min(Z) = ↓−1min(Z). Hence, X is a finitely-represented downward-
closed subset of W−1

× .
By Theorem 11, the languages of W−1 and (W ′)−1 are regular separable and so are the

languages of W and W ′. J

(r, r′) ∈ Q

Q 3 (s, s′)

a

in A

11

a

in W×
// (t, t′) ∈ S×

�
×

Figure 1. The transition relation of A.
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Ideal Completions of UWSTS. The proof of regular separability for UWSTS is more
involved. Here, we need the notion of ideal completions [9, 26]. We show that any invariant
for a WSTS yields a finitely-represented invariant for the corresponding ideal completion.
Theorem 7 follows from this.

An ideal in a wqo (X,�) is a non-empty downward-closed subset Z ⊆ X which is directed:
For every z, z′ ∈ Z there is a z′′ ∈ Z with z � z′′ and z′ � z′′. Every downward-closed set
decomposes into finitely many ideals. In fact, the finite antichain property is sufficient and
necessary for this.

I Lemma 17 ([36, 26, 40]). In a wqo, every downward-closed set is a finite union of ideals.

We use Id-decX(Z) to denote the set of inclusion-maximal ideals in Z. By the above lemma,
Id-decX(Z) is always finite and

Z =
⋃

Id-decX(Z) . (6)

We will also make use of the fact that ideals are irreducible in the following sense.

I Lemma 18 ([36, 26, 40]). Let (X,�) be a wqo. If Z ⊆ X is downward-closed and I ⊆ Z
is an ideal, then I ⊆ J for some J ∈ Id-decX(Z).

The ideal completion (X,⊆) of (X,�) has as elements all ideals in X. The order is
inclusion. The ideal completion X can be seen as extension of X; indeed, every element
x ∈ X is represented by ↓{x} ∈ X, and inclusion among such representations coincides with
the original quasi order �. Later, we will also need general ideals that may not be the
downward closure of a single element.

In [26, 9], the notion has been lifted to WSTS W = (S, T,�, I, F ). The ideal completion
of W is the ULTS W, where the given wqo is replaced by its ideal completion. The initial
configurations are the ideals in the decomposition of ↓I. The transition relation is defined
similarly, by decomposing ↓SuccW(X, a), with X an ideal. The final configurations are the
ideals that intersect F .

I Definition 19 ([26, 9]). For an UWSTS W = (S, T,�, I, F ), we define its ideal com-
pletion W = (S, T ,⊆, I, F ), where (S,⊆) is the ideal completion of (S,�), the transition
relation is defined by SuccW(X, a) = Id-decS(↓SuccW(X, a)) , I = Id-decS(↓I), and
F = {X ∈ S | X ∩ F 6= ∅}.

Using upward compatibility in W, language equivalence holds and determinism is preserved.

I Lemma 20. The ideal completionW of an UWSTSW is a ULTS. We have L(W) = L(W).
If W is deterministic, then so is W.

As a matter of fact, W is even finitely branching, but we do not need this property.
The purpose of using ideal completions is to make it easier to find inductive invariants

that are finitely represented. Assume the given UWSTS W has an inductive invariant X, not
necessarily finitely represented. By definition, X is downward-closed. Thus, by Lemma 17,
X is a finite union of ideals. These ideals are configurations of the ideal completion W. To
turn Id-decS(X) into an inductive invariant of W , it remains to take the downward closure
of the set. As the order among ideals is inclusion, this does not add configurations. In short,
an inductive invariant for W induces a finitely-represented inductive invariant for W.

I Proposition 21. If X ⊆ S is an inductive invariant of W, ↓Id-decS(X) is a finitely-
represented inductive invariant of W.
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Proof. Define Q = Id-decS(X). Since Q contains all ideals Y ⊆ X that are maximal
wrt. inclusion, ↓Q contains all ideals Y ⊆ X. We observe that

X
(6)=
⋃
Q =

⋃
↓Q .

By Lemma 17, Q is finite and thus ↓Q is finitely-represented. It remains to check that ↓Q
satisfies the Properties (3), (4), and (5).

To show Property (3), we need to prove Id-decS(↓I) ⊆ ↓Q. We have I ⊆ X by
Property (3), and since X is downward-closed, we obtain ↓I ⊆ X. Consequently, any ideal
that is a subset of ↓I is also a subset of X, and ↓Q contains all such ideals.

For Property (4), assume towards a contradiction that ↓Q contains an ideal Y that is
final in W. By definition, this means Y contains a final configuration. Since Y ⊆ X, we
obtain a contradiction to X ∩ F = ∅, Property (4).

To check the inclusion SuccW(↓Q, a) ⊆ ↓Q, we pick an ideal Y ∈ ↓Q and show
SuccW(Y, a) ⊆ ↓Q. Recall the definition SuccW(Y, a) = Id-decS(↓SuccW(Y, a)). Thus,
any element of SuccW(Y, a) is an ideal that is a subset of ↓SuccW(Y, a). We have
SuccW(X, a) ⊆ X by Property (5). This implies SuccW(Y, a) ⊆ X as Y ⊆ X, and
even ↓SuccW(Y, a) ⊆ X as X is downward-closed. Hence, any ideal that is a subset of
↓SuccW(Y, a) is also subset of X, and thus an element of ↓Q. J

Theorem 11 expects invariants for UWSTS of a particular shape, namely products W ×W ′.
We now show that the operation of ideal completion commutes with taking products of
UWSTS, a fact that will be key to the proof of Theorem 7. We start by recalling that the
ideals in a product wqo X × Y are precisely the products of the ideals in X and in Y .

I Lemma 22 ([36, 26, 40]). A set Z ⊆ X × Y is an ideal iff Z = I × J , where I ⊆ X and
J ⊆ Y are ideals.

Lemma 22 yields the mentioned commutativity.

I Lemma 23. For two UWSTSes W and W ′, W ×W ′ and W ×W ′ are isomorphic.

We are now prepared to apply Theorem 11 once more to establish our second main result.

Proof of Theorem 7. Let W = (S, T,�, I, F ) and W ′ = (S′, T ′,�′, I ′, F ′) be disjoint
UWSTS and W ′ finitely branching. By Theorem 5 we can assume W ′ is deterministic.

We would like to construct a finitely-represented inductive invariant in the synchronized
product of the ideal completions W×W ′ and then apply Theorem 11. Indeed, by Lemma 20
we know that the ideal completions are disjoint ULTS, and that the latter one is still
deterministic, so they satisfy the assumptions.

Relying on Lemma 23 we prefer to show the existence of a finitely-represented inductive
invariant in W ×W ′. Using Proposition 21, it is sufficient to find any inductive invariant
in W ×W ′, it does not have to be finitely-represented. We know that such an inductive
invariant exists by Lemma 10, since we assume L(W ×W ′) = L(W) ∩ L(W ′) = ∅. J

Effective Representation. The states of the separating automaton in the proof of Theorem 7
are ideals in the product systems. With Lemma 22, these are tuples of ideals in the original
systems. For most types of UWSTS, it is known how ideals can be effectively represented,
i.e. how to obtain finite representations on which the successors can be computed. We briefly
mention such a construction for Petri nets in Lemma 28, see e.g. [9] for more examples.
In general, one may exploit the fact that ideals are downward-closed sets, which in turn
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are complements of upward-closed sets that can be represented by finitely many minimal
elements – an idea first proposed in [28]. Note that in the proof of Theorem 7, we invoke
Theorem 5 to determinize the given finitely-branching UWSTS. The states of the resulting
UWSTS are finitary downward-closed sets of states of the original one. For most types of
UWSTS, this construction can be avoided. We demonstrate this for the case of Petri nets in
the proof of Proposition 30.

5 Separator Size: The Case of Petri Nets

The UWSTS associated to Petri nets are finitely branching. Hence, Theorem 7 applies:
Whenever the coverability languages of two Petri nets are disjoint, they are regular separable.
We now show how to construct a triply-exponential non-deterministic finite automaton (NFA)
separating two such languages, provided they are disjoint. Moreover, for deterministic finite
automata (DFA), we show that this size cannot be avoided.

I Theorem 24. Let L(N1), L(N2) be disjoint Petri net coverability languages. There is an
NFA A of size triply exponential in |N1|+ |N2| such that L(A) separates L(N1) and L(N2).

I Theorem 25. In general, Petri net coverability languages cannot be separated by DFA of
less than triply-exponential size.

Instead of invoking Theorem 7, which uses Theorem 5 to determinize, we directly show how
to construct an equivalent instance of the separability problem in which one of the nets is
deterministic. In this setting, we prove an upper bound that combines Theorem 11 with a size
estimation for an ideal decomposition. We then show how to handle non-determinism. The
lower bound combines a classical result from automata theory, showing that minimal DFA
may have exponentially many states [38], with a Petri net construction due to Lipton [41].

Petri Nets. A Petri net over the alphabet Σ is a tuple N = (P, T, F, λ,M0,Mf ) where P is
a finite set of places, T is a finite set of transitions with P ∩T = ∅, F : (P ∪T )×(P ∪T )→ N is
a flow function, and λ : T → Σ is a labeling of the transitions. The runtime behavior of Petri
nets is defined in terms of so-called markings from M ∈ Nd with d = |P |. If M(p) = k > 0,
we say place p carries k tokens. We assume to be given an initial and a final marking,
M0,Mf ∈ Nd. Markings are changed by firing transitions: A transition t ∈ T is enabled
in marking M ∈ Nd, if M(p) ≥ F (p, t) for all places p. An enabled transition can be fired
leading to the marking M ′ with M ′(p) = M(p)− F (p, t) + F (t, p), denoted M [t〉M ′. Note
that enabledness and firing are upward compatible with the componentwise ordering ≤ on
markings, in the following sense. If M1 ≤M2 and M1[t〉M ′1, then M2[t〉M ′2 with M ′1 ≤M ′2.

Relying on this compatibility, we can define the UWSTS induced by N to be
WN = (NP , T ′,≤, {M0} , ↑Mf ). The transition relation is defined by (M,a,M ′) ∈ T ′ if
there is a transition t ∈ T such that M [t〉M ′ and λ(t) = a. The language ofWN is also called
the (coverability) language of N6, and denoted by L(N). We call N deterministic if WN is.

We use a product operation on Petri nets Ni = (Pi, Ti, Fi, λi,M0,i,Mf,i), i = 1, 2. The
product Petri net is obtained by putting the places of N1 and N2 side by side and creating
a new transition for all pairs of transitions in T1 × T2 that carry the same label. Formally,
N1 ×N2 = (P, T, F, λ,M0,Mf ) with P = P1 ·∪P2, T = {(t1, t2) ∈ T1 × T2 | λ(t1) = λ(t2)}.

6 We consider covering the final marking as acceptance condition, i.e. a sequence of transitions is accepting
if it reaches some marking M ′ with M ′(p) ≥Mf (p) for all p ∈ P .
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We have λ(t1, t2) = λ(t1) = λ(t2). The flow function is defined by the flow functions of the
component Petri nets, F (p, (t1, t2)) = Fx(p, tx) and F ((t1, t2), p) = Fx(tx, p), where x = i if
p ∈ Pi. We have M0(p) = M0,i(p) for p ∈ Pi, and similar for Mf . The product operation on
Petri nets coincides with the product on UWSTS.

I Lemma 26. WN1×N2 is isomorphic to WN1 ×WN2 .

We will need the size of a Petri net. It is defined using a binary encoding of the values in the
range of the flow function and in the markings. Define the infinity norm of a vectorM ∈ Nd to
be ‖M‖∞ = maxp∈P M(p). We extend this notion to matrices, sets of vectors, and functions
by taking the maximum over all entries, elements, and elements in the range, respectively.
The size of the Petri net N is now |N | = |P | |T | (1 + dlog2(1 + ‖F‖∞)e) + |M0|+ |Mf | . The
size of a marking M is |M | = |P |(1 + dlog2(1 + ‖M‖∞)e).

An Upper Bound Assuming Determinism. Theorem 11 assumes that one of the UWSTS
is deterministic. We now show that for Petri nets, in this case, the regular separator is (an
NFA of size) at most doubly exponential in the size of the input Petri nets.

To prove the result, we show how a size estimation for the basis of Reach−1
W with

W = WN1×N2 can be turned into a size estimation for the ideal decomposition of the
complement. The size estimation of the basis is the following result. It is obtained by
inspecting Abdulla’s backward search [1].

I Theorem 27 (Bozzelli & Ganty [11]). Consider a Petri net N with final marking Mf . Then
Reach−1

WN
= ↑{v1, . . . , vk}, where k as well as ‖{v1, . . . , vk}‖∞ are bounded from above by

g = (|T | · (‖F‖∞ + ‖M0‖∞ + ‖Mf‖∞ + 2))2O(|P |·log|P |)
.

By Lemma 10, Nd \Reach−1
W is an inductive invariant ofW (provided the language is empty).

We can now apply Lemma 17 to finitely represent this set by its ideal decomposition. To
represent this ideal decomposition in turn, we have to explicitly represent ideals in Nd. The
following lemma gives such a representation.

Let Nω denote N extended by a new top element ω. Every ideal in Nd is the downward
closure ↓u of a single vector u ∈ Ndω. The lemma moreover shows how to compute the
intersection of two ideals and how to obtain the ideal decomposition of the complement
Nd \ ↑v of the upward closure of a vector v ∈ Nd.

I Lemma 28 (see e.g. [39]). (1) The ideals in Nd have the shape ↓u for u ∈ Ndω. (2) For
two ideals ↓u1, ↓u2 of Nd, the intersection is ↓u1 ∩ ↓u2 = ↓u with u(i) = min {u1(i), u2(i)}.
(3) For v ∈ Nd, we have Id-dec(Nd \ ↑v) = {↓u<v(j) | j ∈ [1..d]} , where u<v(j)(j) = v(j)− 1
and u<v(j)(i) = ω for i 6= j.

We can now combine Theorem 27 and Lemma 28 to obtained our upper bound.

I Proposition 29. Let N1 be an arbitrary Petri net and let N2 be deterministic. If N1 and
N2 are disjoint, they can be separated by an NFA of size doubly exponential in |N1|+ |N2|.

A General Upper Bound. The previous result yields a doubly-exponential separator in
the case where N2 is deterministic. We now show how to get rid of this assumption and
construct a separator in the general case.

I Proposition 30. Let N1 and N2 be disjoint Petri nets. Then they are separable by an NFA
of size triply exponential in |N1|+ |N2|.
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The proof transforms N1 and N2 into N−λ and Ndet so that Ndet is deterministic, invokes
Proposition 29, and then turns the resulting separator for N−λ and Ndet into a separator for
N1 and N2. The approach is inspired by [14].

Let N2 be non-deterministic with labeling function λ : T2 → Σ. We define Ndet to be
a variant of N2 that is labeled by the identity function, i.e. Ndet is a Petri net over the
alphabet T2. We have L(N2) = λ(L(Ndet)), where we see λ as a homomorphism on words.
We furthermore define N−λ to be the T2-labeled Petri net obtained from N1 as follows. For
each a-labeled transition t1 of N1 and each a-labeled transition t of N2, N−λ contains a
t-labeled copy tt1 of t1 with the same input-output behavior. Transition t1 itself is removed.

I Lemma 31. L(N1 ×N2) = λ(L(N−λ ×Ndet)).

With this lemma, and since N1 and N2 are disjoint, N−λ and Ndet have to be disjoint. As
Ndet is deterministic, we can apply Proposition 29 and obtain a separator for N−λ and
Ndet . Let A be the doubly-exponential NFA over the alphabet T2 with L(N−λ) ⊆ L(A) and
L(Ndet) ∩ L(A) = ∅. We show how to turn A into a separator for N1 and N2. The first
step is to determine the complement automaton AC , which satisfies L(Ndet) ⊆ L(AC) and
L(N−λ)∩L(AC) = ∅. The second step is to apply λ to AC . Let B = λ(AC) be the automaton
obtained from AC by relabeling each t-labeled transition to λ(t). The following lemma shows
that B is a separator for the original nets. The observation that the size of AC and hence
the size of B is at most exponential in the size of A concludes the proof of Proposition 30

I Lemma 32. L(N2) ⊆ L(B) and L(N1) ∩ L(B) = ∅.

Note that λ(A) is not necessarily a separator: There might be u ∈ L(A), u 6∈ L(Ndet) such
that there is u′ ∈ L(Ndet) with λ(u) = λ(u′). Thus, λ(u) ∈ λ(L(A)) ∩ L(N2).

A Lower Bound. We now consider separation by deterministic finite automata (DFA). In
this case, we can show a triply-exponential lower bound on the size of the separator.

I Proposition 33. For all n ∈ N, there are disjoint Petri nets N0(n) and N1(n) of size
polynomial in n such that any separating DFA has size at least triply exponential in n.

Our proof relies on the classical result that for each x ∈ {0, 1} and each k ∈ N, the minimal
DFA for the language Lx@k = {w ∈ {0, 1}≥k | the k-last letter in w is x} needs at least 2k
states [38]. To obtain the desired lower bound, we will show how to generate Lx@k for a
doubly-exponential number k by a polynomially-sized Petri net. To this end, we make use of
Lipton’s proof of EXPSPACE-hardness for coverability [41].

6 Conclusion

We have shown that, under mild assumptions, disjointness of WSTS languages implies
their regular separability. In particular, we have shown that if one of two disjoint upward-
compatible WSTS is finitely branching, they are regular separable. Using our expressibility
results, it is also sufficient if the underlying order for one of the two is an ω2-wqo. A similar
result holds for downward-compatible WSTS assuming that one of them is deterministic or
the underlying order is an ω2-wqo. As WSTS are typically ω2-WSTS, our result already
implies the decidability of regular separability for almost all WSTS of practical relevance.

Our work brings together research on inductive invariants and regular separability. We
show that a finite representation of an inductive invariant for the product system can be
transformed into a regular separator. For Petri nets, one may use any representation of
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the coverability set. As we show, it is beneficial in terms of the worst-case size, to use an
inductive invariant obtained from the backward coverability algorithm [1]. For lossy channel
systems, the coverability set is not computable [45], but one can obtain a finitely-represented
inductive invariant e.g. from the EEC-algorithm [30].

We leave some questions without answer. It is not clear whether the assumptions of
Theorems 7 and 6 are necessary; we were neither able to drop the assumptions, nor to provide
a counterexample. Similarly, we do not know whether the inclusions in Theorem 5 are strict.
Finally, in the case of Petri nets, closing the gap between the triply-exponential size of the
NFA separator and the triply-exponential lower bound for DFA remains an open problem.

As future work, one could consider the well-behaved transition systems (WBTS) of [8], a
generalization of WSTS where only the finite-antichain property is required.
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A Details for Section 2

I Lemma 1.
(
P↓fin(X),⊆

)
is a wqo iff (X,�) is a wqo.

Proof. We first assume that
(
P↓fin(X),⊆

)
is a wqo and prove that (X,�) is a wqo. Consider

any infinite sequence x1, x2 . . . , where each xi ∈ X. By our assumption, in the infinite
sequence ↓{x1}, ↓{x2}, . . . we find i < j such that ↓{xi} ⊆ ↓{xj}. We conclude xi � xj as
desired.

For the other direction, we will assume that (X,�) is a wqo. Using Higmann’s lemma,
also (X∗,�∗) is a wqo. Here X∗ is set of all finite sequences over X and �∗ is the subsequence
order, i.e. w �∗ v if w is obtained from v by deleting symbols and/or replacing them by
smaller symbols with respect to �. Now consider any infinite sequence X1, X2, . . . in P↓fin(X).
By definition, each Xi can be written as ↓

{
ui1, . . . , u

i
ni

}
for appropriately chosen uij . We

represent each Xi by ui1 . . . uin1
∈ X∗ and consider the sequence

u1
1 . . . u

1
n1
, u2

1 . . . u
2
n2
, . . .

inX∗. Using the fact that (X∗,�∗) is a wqo, we obtain i < j such that ui1 . . . uini
�∗ uj1 . . . ujnj

.
From this, we immediately obtain Xi ⊆ Xj . J

I Lemma 3. For w ∈ Σ∗, s � s′ with s w−→ r, we have s′ w−→ r′ for some r′ ∈ S with r � r′.

Proof. We claim that for all w ∈ Σ∗, s � s′ and s w−→ r implies s′ w−→ r′ for some r′ ∈ S with
r � r′.

We proceed by induction on w and use upward compatibility. In the base case w = ε,
there is nothing to prove.

Let us now consider a word w.a and s w−→ t
a−→ r. Let s ∈ S with s � s′. By induction,

there is a t′ such that s′ w−→ t′ and t � t′. By the upward compatibility of UWSTS, we get
that there is some r′ with t′ a−→ r′ with r � r′ as required. J

I Lemma 4. Let w ∈ Σ∗. Whenever s � s′ and s w−→ r in ↓W, then s′ w−→ r′ in W for some
r′ ∈ S such that r � r′.

Proof. We claim that for each w ∈ Σ∗, s � s′ and s w−→ r in ↓W implies s′ w−→ r′ in W for
some r′ with r � r′.

We proceed by induction on w. In the base case, the statement follows from the fact that
the initial configurations of ↓W are the configurations in ↓I.

Now consider a word w.a. such that s w−→ t
a−→ r in ↓W. By induction, there is t′ such

that s′ w−→ t′ in W and t � t′. From the definition of transition in ↓W, we have that t a−→ r′′

in W for some r′′ with r � r′′. Since t � t′, we can apply upward compatibility to obtain
t′

a−→ r′ in W with r′′ � r′. We conclude s′ w−→ t′
a−→ r′ in W with r � r′′ � r′ as desired. J

B Details for Section 3

I Theorem 5. The following relations hold between the WSTS language classes:

ω2-UWSTS ⊆ deterministic UWSTS = finitely-branching UWSTS ⊆ all UWSTS ,
ω2-DWSTS ⊆ deterministic DWSTS ⊆ finitely-branching DWSTS = all DWSTS ,
ω2-UWSTS ⊆rev deterministic DWSTS ,
ω2-DWSTS ⊆rev deterministic UWSTS .
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We formulate and prove a series of lemmas which jointly prove Theorem 5.

I Lemma 34. Every ω2-UWSTS is equivalent to a deterministic UWSTS.

Proof. LetW = (S, T,�, I, F ) be an arbitrary ω2-UWSTS. Wlog. we assume thatW = ↓W ,
i.e. SuccW(X, a) is downward closed for every X and a, and ReachW(w) is downward
closed for every w.

We define a deterministic UWSTS W = (S, T ,⊆, I, F ) essentially as a powerset construc-
tion on W. Let the configurations S̄ = P↓(S) be the downward closed subsets of S, ordered
by inclusion ⊆; this is a wqo by Lemma 2. Let the only initial configuration of W be the
set I itself, i.e. let I = {I}. (Recall that I is downward closed in ↓W.) Let the accepting
configurations F = {X ∈ S | X ∩ F 6= ∅} be those downward closed subsets X ∈ S which
contain at least one accepting configuration from F . The transition relation T is defined by
the direct image,

X
a−→ SuccW(X, a) (7)

which is well-defined as SuccW(X, a) ⊆ S is always downward closed. The equality of the
languages of W and W follows directly from the following claim:

Claim: For every w ∈ Σ∗, ReachW(w) = {ReachW(w)} .

The claim is shown by induction on the length of w. The base case is I = {I}, and the step
follows by (1) combined with the equality SuccW(X, a) = {SuccW(X, a)}, a reformulation
of (7). J

I Lemma 35. Every ω2-DWSTS is equivalent to a deterministic DWSTS.

This can be proven similarly to Lemma 34.

Proof. Let W = (S, T,�, I, F ) be an ω2-DWSTS. Wlog. we assume that W = ↑W , i.e., the
initial configurations and the transition relation in W are upward closed. A deterministic
DWSTS W = (S, T ,⊇, I, F ) equivalent to W can be defined, essentially by a powerset
construction on W, similar to the proof of Lemma 34. Let the configurations S = P↑(S) be
the upward closed subsets of S, ordered by the superset relation ⊇.

Using the fact that (P↑(S),⊇) and (P↓(S),⊆) are isomorphic and Lemma 2, we obtain
that (P↑(S),⊇) is a wqo. Let the initial configuration of W be the set I, i.e. I − {I}.
The accepting configurations are those sets containing an accepting configuration in W,
F = {X ∈ S | X ∩ F 6= ∅}.

The transition relation T is defined by the direct image:

X
a−→ SuccW(X, a)

which is well-defined as SuccW(X, a) is upward closed for X ∈ P↑(S). The equality of the
languages of W and W follows directly from the following claim:

Claim: For every w ∈ Σ∗, ReachW(w) = {ReachW (w)}.

The claim is shown by induction on the length of w. The induction base is I = {I}, and the
inductive step follows by (1) combined with the equality SuccW(X, a) = {SuccW(X, a)}. J

Also similarly, but using the finitary downward closed subsets, we prove the following
result.
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I Lemma 36. Every finitely-branching UWSTS is equivalent to a deterministic UWSTS.

Proof. Given a finitely-branching UWSTS W = (S, T,�, I, F ) we define a deterministic one
W = (S, T ,⊆, I, F ) by a powerset construction. We proceed similarly as in the proof of
Lemma 34, but using the finitely-represented downward closed subsets of S instead of all
such sets.

Let configurations be downward closures of finite subsets of S, S = P↓fin(S). They are
ordered by inclusion ⊆, which is a wqo by Lemma 1. Define the unique initial configuration of
W as I = {↓I}, and note that I is finite. The final configurations ofW are the sets containing a
final configuration from W , F = {X ∈ P↓fin(S) | X ∩ F 6= ∅}. Let the deterministic transition
relation be defined by direct image,

X
a−→ ↓SuccW(X, a).

Note that X ∈ P↓fin(S) implies SuccW(X, a) ∈ P↓fin(S), as W is assumed to be finitely
branching and satisfies upward compatibility. The equality of the language of W and the
language of W follows by the following claim and the fact that W and ↓W are language-
equivalent:

Claim: For every w ∈ Σ∗, ReachW(w) = {Reach↓W(w)} .

We proceed by induction on w.
In the base case, we have ReachW(ε) = {↓I} = {Reach↓W(w)} as desired.

Let us now consider some word w.a. Using induction and the definition of the transition
relation in W, we have

ReachW(w.a) = SuccW(ReachW(w), a)
= SuccW({Reach↓W (w)} , a)
= {↓SuccW(Reach↓W (w), a)}

We claim that we indeed have

↓SuccW(Reach↓W (w), a) = Reach↓W(w.a) .

Let s ∈ S be such that s � s′ for some s′ ∈ SuccW(Reach↓W (w), a). This means s′ a−→ t′

in W for some t′ ∈ Reach↓W (w). By the definition of the transition relation of ↓W, we
conclude s a−→ t in ↓W which implies s ∈ Reach↓W(w.a).

Let s ∈ Reach↓W(w.a), then we have s a−→ t in ↓W for some t ∈ Reach↓W(w). By the
definition of the transition relation of ↓W , we have that there is some s′ with s � s′ and s′ a−→ t

inW . We obtain s′ ∈ SuccW(Reach↓W (w), a) and conclude s ∈ ↓SuccW(Reach↓W (w), a).
This proves the claim, showing that the language of W is equal to the language of ↓W,

which in turn is equal to the language of W. J

I Lemma 37. Every DWSTS is equivalent to a finitely branching DWSTS.

Proof. Given a DWSTS W = (S, T,�, I, F ) we define a finitely-branching one
W = (S, T , � , I, F ). Wlog. we assume, W = ↑W.

The configurations of W are the same as those of W , S = S. The transition relation T of
W is a subset of T , where only minimal successors wrt. � are allowed:

SuccW(x, a) def= min(SuccW(x, a)). (8)
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The initial configurations ofW are minimal initial configurations ofW , I = min(I). As (S,�)
is a wqo, all upward closed sets have a minimal basis. Since in ↑W , the set of successors and
the set of initial states are upward closed, T is finitely branching and I is finite. Finally, we
put F = F . The equality of the languages of W and W is due to the following equality for
all w ∈ Σ∗:

ReachW(w) = min(ReachW(w)). (9)

Indeed, as F is downward closed, we have that ReachW(w) contains a configuration from F

if and only if ReachW(w) does.
Finally, the equality (9) itself is shown by induction on the length of w. The base case is

I = min(I). The induction step follows by (1) and (8). We start with

X
def= ReachW(wa) (1)= SuccW(ReachW(w), a) (8)= min(SuccW(ReachW(w), a))

and use the induction hypothesis to derive X = min(SuccW(min(ReachW(w)), a)). Finally,
using downward-compatibility and the assumption that the transition relation inW is upward
closed we observe that for every upward closed set Y ⊆ S,

SuccW(min(Y ), a) = SuccW(Y, a),

which allows us to complete the induction step:
X = min(SuccW(ReachW(w), a)) (1)= min(ReachW(wa)) . J

By using similar powerset constructions, we can show the following two results.

I Lemma 38. Every ω2-UWSTS is reverse-equivalent to a deterministic DWSTS.

Proof. Given an ω2-UWSTS W = (S, T,�, I, F ), we define a deterministic DWSTS
W = (S, T , � , I, F ) as follows:

Configurations are upward closed subsets of S, i.e. S = P↑(S), ordered by the superset
relation, the reverse of inclusion: U �V iff U ⊇ V . This order is isomorphic to the order
(P↓(S),⊆) of downward closed subset ordered by inclusion, hence a wqo by Lemma 2. There
is one initial configuration in W, namely I = {F}. An upward closed subset U ∈ P↑(S) is
final, i.e. U ∈ F , if U ∩ I 6= ∅, i.e. if U contains some initial configuration from I. The set F
is downward closed as required; indeed, if U ∈ F and U ⊆ V then necessarily V ∈ F too.
The deterministic transition relation is defined using the pre-image:

U
a−→ PredW(U, a) .

(Note that PredW(U, a) is upward closed whenever U is.) Finally, we verify that � satisfies
the downward compatibility condition: If U ⊆ V , then PredW(U, a) ⊆ PredW(V, a).

From the following claim, we deduce that the language ofW is the reverse of the language
of W.

Claim: For every w ∈ Σ∗, ReachW(w) =
{

Reach−1
W (rev(w))

}
.

We prove the claim by induction on w. In the base case, we have

ReachW(ε) = I = {F} =
{

Reach−1
W (w)

}
.
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Now consider a word w.a and note that rev(w.a) = a.rev(w). Using induction and the
definition of T , we have

ReachW(w.a) (1)= SuccW(a,ReachW(w))
= SuccW(a,

{
Reach−1

W (rev(w))
}

)
= PredW(a,

{
Reach−1

W (rev(w))
}

)
(2)=
{

Reach−1
W (a.rev(w))

}
.

Thus, w ∈ L(W) iff (by the above claim) Reach−1
W (rev(w)) ∈ F iff Reach−1

W (rev(w))∩I 6= ∅
iff ReachW(rev(w)) ∩ F 6= ∅ iff rev(w) ∈ L(W). J

I Lemma 39. Every ω2-DWSTS is reverse-equivalent to a deterministic UWSTS.

Proof. Let W = (S, T,�, I, F ) be the given ω2-DWSTS, we show how to construct the
required deterministic UWSTS W = (S, T ,⊆, I, F ) as follows: Configurations are downward
closed subsets of S, i.e. S = P↓(S), ordered by inclusion ⊆. By Lemma 2, (P↓(S),⊆) is a
wqo.

The initial configuration is given by I = {F}. Note that by definition F is a downward
closed set. A downward closed set D ∈ S is final if it contains an initial configuration, i.e.

F = {D ∈ P↓(S) | D ∈ S ∧D ∩ I 6= ∅}

Note that for any V , U ⊆ V for some U ∈ F implies V ∩ I 6= ∅, hence V ∈ F . Hence F is
upward closed as required. The deterministic transition relation is given by

U
a−→ PredW(U, a)

If U is downward closed then PredW(U, a) is also downward closed by downward-
compatibility.

Finally, we show that � satisfies upward compatibility. For this, let U, V be such that
U ⊆ V . We need to prove that if U a−→ U ′, then there is a V ′ with V a−→ V ′ and U ′ ⊆ V ′.
This follows from U ′ = PredW(U, a) ⊆ PredW(V, a) = V ′.

The equality of the language of W and the language of W follows by the following claim:

Claim: For every w ∈ Σ∗, ReachW(w) =
{

Reach−1
W (rev(w))

}
.

The proof of the claim is similar to the one in the proof of Lemma 38. Thus,
w ∈ L(W) iff (by the above claim) Reach−1

W (rev(w)) ∈ F iff Reach−1
W (rev(w)) ∩ I 6= ∅

iff ReachW(rev(w)) ∩ F 6= ∅ iff rev(w) ∈ L(W). J

C Details for Section 4

I Lemma 13. (1) For every s ∈ ReachW(w) there is some (s, s′) ∈ ReachW×(w). (2) For
every (s, s′) ∈ ReachW×(w) there is some (r, r′) ∈ ReachA(w) with (s, s′) �× (r, r′).

Proof.
(1) We show that for every s ∈ ReachW(w), there is some (s, s′) ∈ ReachW×(w).

Indeed, s ∈ ReachW(w) implies (s, s′) ∈ ReachW×(w) for s′ = ReachW′(w).
(2) We show that for every (s, s′) ∈ ReachW×(w), there is some (r, r′) ∈ ReachA(w) with
(s, s′) �× (r, r′).
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We proceed by induction on w. In the base case, we have that any
(s, s′) ∈ I× = ReachW×(ε) is dominated by some (r, r′) ∈ Q since I ⊆ ↓Q, Property 3. By
the definition of QI , we have (r, r′) ∈ QI = ReachA(ε).

Now consider (s, s′) ∈ ReachW×(w.a). By definition, there is (s̃, s̃′) ∈ ReachW×(w)
and (s̃, s̃′) a−→ (s, s′) in W×. Applying induction, we obtain (r̃, r̃′) ∈ ReachA(w) with
(s̃, s̃′) �× (r̃, r̃′). Using the upward-compatibility of W×, there is a transition (r̃, r̃′) a−→ (t, t′)
in W× such that (s, s′) �× (t, t′). Since (r, r′) ∈ Q, and ↓Q is closed under taking successors
in W×, Property 5, we have that there is (r, r′) ∈ Q such that (t, t′) �× (r, r′). We have
(s, s′) �× (r, r′) be transitivity. To complete the proof, it remains to argue that there is a
transition (r̃, r̃′) a−→ (r, r′) in A. To this end, we instantiate the definition of the transition
relation, using (t, t′) �× (r, r′). J

I Lemma 15. For every w ∈ Σ∗ and every (s, s′) ∈ ReachA(w) we have ReachW′(w) �′ s′.

Proof. We proceed by induction on w. The base case follows by the definition of the initial
states in A. For the induction step, consider (s, s′) ∈ ReachA(w.a), which means there is
(r, r′) ∈ ReachA(w) with (r, r′) a−→ (s, s′) in A. By definition of the transition relation in the
automaton, there is (t, t′) such that (r, r′) a−→ (t, t′) in W× and (t, t′) �× (s, s′). By definition
of the transition relation in W×, we have r′ a−→ t′ in W ′.

We apply induction to (r, r′) and get ReachW′(w) �′ r′. In W ′, we have
ReachW′(w) a−→ ReachW′(w.a). Using upward compatibility of W ′, r′ can simulate this
transition. Since W ′ is deterministic, it is in fact simulated by r′ a−→ t′ and we conclude
ReachW′(w.a) �′ t′. Hence, ReachW′(w.a) �′ t′ �′ s′. J

Proof. Our goal is to apply Theorem 11. Consider an arbitrary DWSTS W = (S, T,�, I, F )
and a deterministic one W ′ = (S′, T ′,�′, I ′, F ′). We start with the observation that the
inversed versions ofW andW ′, namely with the orders �−1 and (�′)−1 and denoted byW−1

and (W ′)−1, are ULTS. We claim that these ULTS satisfy the assumptions of Theorem 11.
The language of W−1

× =W−1 × (W ′)−1 is empty since the language of W× = W ×W ′ is
empty and inversion does not change the language, L(W) = L(W−1) and similar for W ′.
Inversion also does not influence determinism.

It remains to find an inductive invariant of W−1
× that is finitely represented. We claim

that

X = ↓−1ReachW−1
×

is a suitable choice. The subscript indicates that the downward closure is computed relative
to the quasi order of W−1

× . The proof of Lemma 10 shows that X is an inductive invariant.
For the finite representation, note that inversion does not change the transition relation.
Hence, W× and W−1

× reach the same configurations,

ReachW−1
×

= ReachW× = Z .

With the definition of inversion, X = ↓−1Z = ↑Z holds. Moreover, ↑Z = ↑min(Z),
with minimum and upward closure computed relative to W×. Since the configurations
of W× are well quasi ordered, min(Z) is finite. Another application of inversion yields
X = ↑min(Z) = ↓−1min(Z). Hence, X is a finitely-represented downward-closed subset of
W−1
× .
By Theorem 11, the languages of W−1 and (W ′)−1 are regular separable and so are the

languages of W and W ′. J
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I Lemma 20. The ideal completionW of an UWSTSW is a ULTS. We have L(W) = L(W).
If W is deterministic, then so is W.

Proof. The ideal completion is a ULTS. Indeed, the set of final configurations F is upward-
closed since the ideals are ordered by inclusion. The transition relation still satisfies upward
compatibility by Lemma 18.

The language is preserved due to the following invariant:

Claim: For every w ∈ Σ∗,
⋃

ReachW(w) = ↓ReachW(w) .

We prove the claim by induction on w.
In the base case, we have⋃

ReachW(ε) =
⋃
I

=
⋃

Id-decS(↓I)
(6)= ↓I
= ↓ReachW(ε)

as required.
Consider w.a. Using upward compatibility, induction, and the fact that unions commute

with taking the successor in W, we obtain

↓ReachW(w.a) = ↓SuccW(ReachW(w), a)
= ↓SuccW(↓ReachW(w), a)

= ↓SuccW(
⋃

ReachW(w), a)

= ↓SuccW(
⋃

Y ∈ReachW(w)

Y, a)

=
⋃

Y ∈ReachW(w)

↓SuccW(Y, a) .

Using Equation (6), the last expression is equal to⋃
Y ∈ReachW(w)

⋃
Id-decS(↓SuccW(Y, a)) .

By the above equality and the definition of the transition relation in W, we obtain⋃
Y ∈ReachW(w)

⋃
↓SuccW(Y, a)

=
⋃ ⋃

Y ∈ReachW(w)

SuccW(Y, a)

=
⋃

SuccW(ReachW(w), a)

=
⋃

ReachW(w.a)

as desired.
Suppose now that W = (S, T,�, I, F ) is deterministic. In particular, I = {i} for some

i ∈ S. Then ↓{i} is the unique initial configuration of W. To prove that SuccW(X, a)
contains a unique element, we show that ↓SuccW(X, a) is already an ideal. To this end,
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it is sufficient to show that whenever X is directed, SuccW(X, a) is directed. Consider
r, r′ ∈ SuccW(X, a). Then there are s, s′ ∈ X with s a−→ r and s′ a−→ r′. As X is directed,
there is an element s̃ with s � s̃ and s′ � s̃. Using upward compatibility, s̃ can simulate the
transitions of s and s′. Since W is deterministic, there is in fact a unique r̃ ∈ SuccW(X, a)
with s̃ a−→ r̃ and r � r̃ as well as r′ � r̃, as desired. J

I Lemma 23. For two UWSTSes W and W ′, W ×W ′ and W ×W ′ are isomorphic.

Proof. With Lemma 22, as an isomorphism between W×W ′ and W ×W ′ take the function
I, J 7→ I × J that maps a pair of ideals to their product. This is an isomorphism as the
transition relation in the ideal completion of a UWSTS is defined by direct image, and direct
image commutes with product. J

D Details for Section 5

D.1 Proof of Theorem 24
I Proposition 29. Let N1 be an arbitrary Petri net and let N2 be deterministic. If N1 and
N2 are disjoint, they can be separated by an NFA of size doubly exponential in |N1|+ |N2|.

Proof. Let N1 and N2 be the given Petri nets with a total of d ∈ N places. LetW =WN1×N2 .
Since L(W) is empty, X = Nd \ Reach−1

W is an inductive invariant of W by the proof of
Lemma 10. By Proposition 21, ↓Y with Y = Id-decNd(X) is a finitely-represented inductive
invariant in the ideal completion W. By Lemma 26 and Lemma 23, we have

WN1×N2
iso= WN1 ×WN2

iso= WN1 ×WN2 .

Hence, as N2 is deterministic, we can construct a separating finite automaton with states Y
by Theorem 11.

It remains to prove that the cardinality of Y is at most doubly-exponential. To this end,
we invoke Theorem 27 and consider a representation Reach−1

W = ↑{v1, . . . , vk}. We have

X = Nd \ ↑{v1, . . . , vk}

= Nd \
⋃

i∈[1..k]

↑vi

=
⋂

i∈[1..k]

(
Nd \ ↑vi

)
=

⋂
i∈[1..k]

⋃
ji∈[1..d]

↓u<vi(ji) .

where the ideal representatives u<vi(ji) are constructed as in Lemma 28(3). We use distribu-
tivity to rewrite this expression as⋂

i∈[1..k]

⋃
ji∈[1..d]

↓u<vi(ji) =
⋃

~j∈[1..d]k

⋂
i∈[1..k]

↓u<vi(~j(i)) .

By Lemma 28(1) and (2), applied inductively, we obtain that each intersection

k⋂
i=1
↓u<vi(~j(i)) is an ideal ↓u~j .
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This means the ideal decomposition of X consists of at most dk ≤ dg many ideals, with g as
defined in Theorem 27.

This bound is triply-exponential. We improve by observing that
‖u~j‖∞ ≤ ‖{v1, . . . , vk}‖∞ ≤ g for all ~j. (Here, the infinity norm is extended to Ndω
by treating ω-components as zero.) Consequently, all non-ω components are bounded by g,
and we only have (g + 2)d many such vectors in Ndω.

The ideal decomposition of X thus consists of at most

h =
(

(|T | (‖F‖∞ + ‖M0‖∞ + ‖Mf‖∞ + 2))2O(d·log d)
+ 2
)d

many ideals. Note that even if ‖F‖∞+ ‖M0‖∞+ ‖Mf‖∞ are exponential in |N1|+ |N2| (due
to the binary encoding of values), h is still doubly exponential in the size of the given Petri
nets. J

I Lemma 31. L(N1 ×N2) = λ(L(N−λ ×Ndet)).

Proof. We show that for the Petri nets N−λ and Ndet that we have constructed,

L(N1 ×N2) = λ(L(N−λ ×Ndet))

holds.
Let w be in the left-hand side. Consider the corresponding computations u1 and u2 of

N1 and N2, respectively. u2 can be seen as a computation of Ndet with λ(u2) = w as desired.
Consider the computation u′1 of N−λ that is obtained as follows: If at some position i, u1
uses transition t1 ∈ T1 and u2 uses transition t ∈ T2 (where λ1(t1) = λ(t) has to hold), we let
u′1 use transition tt1. Note that in N−λ, this transition has label t. Indeed, u′1 synchronizes
with u2 as desired, proving u2 ∈ L(N−λ × Ndet) and thus λ(u2) = w is in the right-hand
side.

Let λ(u2) be in the right hand side and let u′1, u2 be the corresponding computations. u2
is already a computation of N2 with labeling λ(u2) as desired. We define the computation
u1 of N1 as follows: If at some positions i, u′1 uses some transition tt1, we define u1 to
use transition t at this position. Note that λ1(t1) = λ(t) has to hold. The computations
synchronize as desired, proving that λ(u′1) = λ(u2) is in the left-hand side. J

I Lemma 32. L(N2) ⊆ L(B) and L(N1) ∩ L(B) = ∅.

Proof. We have L(Ndet) ⊆ L(AC) and hence

L(N2) = λ(L(Ndet)) ⊆ λ(L(AC)) = L(λ(AC)) = L(B).

As for disjointness, assume w ∈ L(N1) ∩ L(B). Then there is an accepting computation
u in N1 with λ1(u) = w and v ∈ L(AC) with λ(v) = w. We inductively construct a v-labeled
accepting computation in N−λ. This will contradict L(N−λ) ∩ L(AC) = ∅. Whenever u
uses some transition t1 and v uses t ∈ T2, use the transition tt1 of N−λ. Since we have
λ1(t1) = λ(t), the transition tt1 indeed exists in N−λ. Because the behavior of t1 and tt1 is
the same, the resulting computation of N−λ is still accepting. J

D.2 Proof of Theorem 25 / Proposition 33
I Proposition 33. For all n ∈ N, there are disjoint Petri nets N0(n) and N1(n) of size
polynomial in n such that any separating DFA has size at least triply exponential in n.
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To construct the required nets, we make use of Lipton’s proof of EXPSPACE-hardness for
coverability [41]. We will not need the precise construction, the following lemma gives a
specification of Lipton’s Petri nets that is enough for our purposes.

I Lemma 40 (Lipton [41]). For every n ∈ N,
a) there is a Petri net Ninc(n) of size polynomial in n with places phaltinc and pout such that

any computation leading to a marking M with M(phaltinc) = 1 has M(pout) = 22n .
b) there is Ndec(n) of size polynomial in n with places phaltdec and pin such that there is a

computation leading to a marking M with M(phaltdec) = 1 if and only if M0(pin) ≥ 22n .
We can assume all transitions in these Petri nets carry label b.

Using the lemma, we create for x ∈ {0, 1} a new Petri net Nx(n) over the alphabet {0, 1, b, c}
whose language is essentially Lx@22n , where

Lx@k = {w ∈ {0, 1}≥k | the k-last letter in w is x}

A computation of Nx(n) consists of four successive phases. Four so-called control places
p1, . . . , p4 indicate the current phase of the computation, and all transitions of a specific
phase check that the corresponding control place carries a token.
1. In the first phase, Ninc(n) is used to create 22n tokens on pout and one token on phaltinc.

The phase ends by firing a c-labeled transition that checks for a token on phaltinc and
moves the token from control place p1 to p2. Note that all transitions are labeled b up to
this point.

2. In the second phase, there are two transitions labeled by 0 resp. 1 which only check that
the control place carries a token.
They create an arbitrary sequence in {0, 1}∗, corresponding to the part of the word before
the last 22n letters.

x. The second phase ends with an x-labeled transition that moves the token from control
place p2 to p3. It consumes one token from pout and generates one token on pin.

3. In the third phase, there are two transitions labeled by 0 resp. 1, each moving one token
from pout to pin. The phase ends by firing a c-labeled transition that moves the token
from p3 to p4.

4. In the fourth phase, Ndec(n) is used to check that the number of tokens on pin at the
beginning of the phase is at least 22n .

The initial marking for Nx(n) assigns a token to p1 as well as the necessary initial tokens
to Ninc(n) and Ndec(n). The final marking requires a token on p4 and a token on the place
phaltdec of Ndec(n).

We claim that the language of Nx(n) is

L(Nx(n)) = L′.c.Lx@22n .c.L′′ with L′,L′′ ⊆ b∗ .

With the control places p1, . . . , p4, words in L(Nx(n)) clearly have the shape winc.c.w.c.wdec,
where winc and wdec are computations in Lipton’s Petri nets. We argue that the 22n-last
letter in w is x. After running Ninc(n), we have 22n tokens on pout . This means the x-labeled
transition that ends the second phase has to be fired at most 22n letters before the end of
w, because any transition fired in the third phase consumes a token from pout. Since any
transition fired during the third phase also produces a token on pin, and we check for 22n

tokens on this place in phase four, the x-labeled transition has to be fired at least 22n letters
before the end of w.
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Since Ninc(n) and Ndec(n) are of size polynomial in n, and in Nx(n) we only add a
constant number of transitions and places, and a polynomial number of entries to the flow
function, it is clear that Nx(n) is also polynomially-sized.

It remains to argue that L(N0(n)) and L(N1(n)) cannot be separated by a DFA of less
than triply-exponential size. Recall that the languages of each Nx(n) is

L′.c.Lx@22n .c.L′′ .

Since the languages are not distinguishable in their L′ prefix and L′′ suffix, the separator has
to distinguish L0@22n from L1@22n . These languages partition {0, 1}≥22n

, so the separator
has to incorporate a DFA for L0@22n . It is a classic result from automata theory that any
DFA for Lx@m needs to have at least 2m states [38]. Intuitively, a DFA for Lx@m cannot
guess the end of the word. It always needs to store the last m bits of the input that it has
processed so far, for which there are 2m possibilities. For the sake of completeness, we give a
formal proof.

I Proposition 41. Any DFA A such that L(N0(n)) ⊆ L(A) and L(A)∩L(N1(n)) = ∅ needs
to have at least 222n

many states.

Proof. For ease of notation, we define k = 22n . Assume towards a contradiction that A has
strictly less than 2k states. We consider the set B = {0, 1}k of all sequences over {0, 1} of
length exactly k. We have that |B| = 2k.

Let winc ∈ b∗ be a word corresponding to computation for Ninc(n) that creates k
many tokens on places pout and one token on phaltinc. Similarly, let wdec ∈ b∗ be a word
corresponding to a computation for Ndec(n) that creates a token on phaltdec (assuming that
pin contains at least k tokens).

For any w = w1 . . . wk ∈ B, winc.c.w.c.wdec is contained in the language of Nx(n)
for exactly one x ∈ {0, 1}, namely for x = w1. For each w ∈ B, we denote by qw
the unique control state in which the DFA A is after processing winc.c.w. Since A has
strictly less than 2k states, but B has 2k elements, there are distinct w,w′ ∈ B such that
qw = qw′ . Since w 6= w′, there is some bit i ≥ 1 such that wi 6= w′i. We assume with-
out loss of generality wi = 0, w′i = 1. Let us define wfill = 0i−1. Since winc.c.w and
winc.c.w

′ lead to the same state, also winc.c.w.wfill .c.wdec and winc.c.w
′.wfill .c.wdec lead to

the same state. Thus, either both or none of these words is accepted by A. To com-
plete the proof, note that the length i− 1 of wfill was chosen such that wi is the k-last
bit of w.wfill . Therefore, we have winc.c.w.wfill .c.wdec ∈ L(N0(n)) ⊆ L(A) since the k-
last bit is 0, and winc.c.w

′.wfill .c.wdec ∈ L(N1(n)) since the k-last bit is 1. We conclude
winc.c.w

′.wfill .c.wdec 6∈ L(A) since L(N1(n)) ∩ L(A) = ∅, a contradiction. J
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