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What is their relationship?
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Given L,K ⊆ Σ∗ from class F .
What is their relationship?

Case 1: L ∩ K ̸= �

L K

↰

study L ∩ K

1



Separability

Case 2: L ∩ K = �

L K

vs.

L K
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Separability

Consider separability

Separability of F by S
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ from S such that

L ⊆ R, K ∩R = �?
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Separability of F by S
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ from S such that

L ⊆ R, K ∩R = �?
Commonly studied:
• S ⊂ F = REG
e.g. S = star-free languages↰

Separability is decidable [PZ16]

• S = REG ⊂ F
Regular separability
(related work in a second)
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Regular separability

Regular separability of F
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ regular such that

L ⊆ R, K ∩R = �?
Observation:
Problem is symmetric in the input:
If L ⊆ R, K ∩R = �,
then K ⊆ R, L ∩R = �.

↰

Call L,K regularly separable if separator R exists.
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Regular separability

Regular separability of F
Given: Languages L,K ⊆ Σ∗ from F
Decide: Is there R ⊆ Σ∗ regular such that

L ⊆ R, K ∩R = �?
Disjointness is always a necessary condition for any kind of
separability.

It is not always sufficient, consider

L = anbn, K = L .
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Regular separability - A map

REG

VPL

DCFL

CFL

OCN

OCA

PNCOV

PNREACHWSTS

trivial

[SW76]open, [CCLP17a,CCLP17b]
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Regular separability - A map

REG

VPL

DCFL

CFL

OCN

OCA

PNCOV

PNREACHWSTS

trivial

[SW76]

[K16]

[CL17]

[CL17]non-trivial

open, [CCLP17a,CCLP17b]this talk
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Well-structured transition systems



Well quasi orders

Consider (X,⩽) quasi order (reflexive, transitive)
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iff all antichains and descending chains are finite
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Well quasi orders

Consider (X,⩽) quasi order (reflexive, transitive)

(S,⩽) well quasi order (wqo)
iff upward-closed sets have finitely many minimal elements
iff all antichains and descending chains are finite

Lemma (Dickson’s lemma)
(Nk,⩽k) is a well quasi order

(1, 2) ̸⩽2 (2, 1) ⩽2 (2, 2)
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Well quasi orders

Consider (X,⩽) quasi order (reflexive, transitive)

(S,⩽) well quasi order (wqo)
iff upward-closed sets have finitely many minimal elements
iff all antichains and descending chains are finite

Lemma (Dickson’s lemma)
(Nk,⩽k) is a well quasi order

(1, 2) ̸⩽2 (2, 1) ⩽2 (2, 2)

Lemma (Higman’s lemma)
(Σ∗,⩽∗) is a well quasi order

RADAR ⩽∗ ABRACADABRA 6



Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FS01].
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Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FS01].

W = (S,⩽, T, I, F)

(S,⩽) states wqo
T ⊆ S× Σ× S labeled transitions
I ⊆ S initial states
F ⊆ S final states, upward-closed

Monotonicity / Simulation property:
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Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FS01].

W = (S,⩽, T, I, F)

(S,⩽) states wqo
T ⊆ S× Σ× S labeled transitions
I ⊆ S initial states
F ⊆ S final states, upward-closed
Monotonicity / Simulation property:

s′ a // r′ (∃)

s

⪯

a // r

⪯
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Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FS01].

W = (S,⩽, T, I, F)

(S,⩽) states wqo
T ⊆ S× Σ× S labeled transitions
I ⊆ S initial states
F ⊆ S final states, upward-closed

Monotonicity / Simulation property:

Coverability language

L(W) =
{
w ∈ Σ∗

∣∣∣ ci w−→ cf for some ci ∈ I, cf ∈ F
}
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Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FS01].

W = (S,⩽, T, I, F)

Example 1:
Labeled Petri net with covering Mf as acceptance condition
induces WSTS

(NP,⩽P, T,M0,Mf ↑) .
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Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FS01].

W = (S,⩽, T, I, F)

Example 1:
Labeled Petri net with covering Mf as acceptance condition
induces WSTS

(NP,⩽P, T,M0,Mf ↑) .

Example 2:
Labeled lossy channel system (LCS) [AJ93] induces a WSTS.

7



The result & and its consequences



The result & its consequences

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.
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The result & its consequences

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.

Corollary
If a language and its complement are finitely-branching WSTS
languages, they are necessarily regular.

This generalizes earlier results for Petri net coverability
languages. [MKR98a,MKR98b]
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The result & its consequences

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.

Corollary
If a language and its complement are finitely-branching WSTS
languages, they are necessarily regular.

This generalizes earlier results for Petri net coverability
languages. [MKR98a,MKR98b]

Corollary
No subclass of finitely-branching WSTS beyond REG is closed
under complement.
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Expressibility results



Our result - Recall

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.

W finitely branching: I finite, PostΣ(c) finite for all c
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Our result - Recall

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.

W finitely branching: I finite, PostΣ(c) finite for all c

How much of a restriction is it to assume finite branching?

What do we gain by assuming finite branching?
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Expressibility I

Proposition
Languages of ω2-WSTS

⊆ Languages of finitely branching WSTS.

(S,⩽) ω2 wqo
iff

(
P↓(S),⊆

)
wqo

iff (S,⩽) does not embed the Rado order

Our result applies to all WSTS of practical interest!
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Expressibility II

Proposition
Languages of finitely branching WSTS

= Languages of deterministic WSTS.

Sufficient to show:
Theorem
If two WSTS languages, one of them deterministic, are
disjoint, then they are regularly separable.
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Proof approach

Theorem
If two WSTS languages, one of them deterministic, are
disjoint, then they are regularly separable.

Proof approach:

Relate separability to the existence of certain invariants:

Separability talks about the languages,
Invariants talk about the state space!

12



Inductive invariant

Inductive invariant [MP95] X
for WSTSW :
(1) X ⊆ S downward-closed
(2) I ⊆ X
(3) F ∩ X = �
(4) PostΣ(X) ⊆ X I

F

Post∗

Pre∗S \ Pre∗

X

13



Inductive invariant

Inductive invariant [MP95] X
for WSTSW :
(1) X ⊆ S downward-closed
(2) I ⊆ X
(3) F ∩ X = �
(4) PostΣ(X) ⊆ X I

F

Post∗

Pre∗S \ Pre∗

X

Lemma
L(W) = � iff inductive invariant forW exists.
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Proof approach

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has inductive invariant

!

?
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Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if X = Q ↓ for Q finite
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Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if X = Q ↓ for Q finite

Recall:

(S,⩽) well quasi order (wqo)
iff upward-closed sets have finitely many minimal elements.

No such statement for downward-closed sets and maximal
elements!
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Finitely represented invariants

The desired implication does not hold.

Call an invariant X finitely represented if X = Q ↓ for Q finite

We can show:
Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.

15



Proof approach II

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has fin.-rep. invariant

!

7✓
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Proof approach II

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has fin.-rep. invariant

!

7✓
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Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals
Definition
For WSTSW , let Ŵ be its ideal completion. [KP92][BFM14,FG12]

Lemma
L(W) = L(Ŵ).
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Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals
Definition
For WSTSW , let Ŵ be its ideal completion. [KP92][BFM14,FG12]

Lemma
L(W) = L(Ŵ).

Proposition
If X is an inductive invariant forW ,
then its ideal decomposition Idec(X)↓
is a finitely-represented inductive invariant for Ŵ .
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Proof

Putting everything together:

IfW1,W2 are disjoint,W1 ×W2 admits an invariant X.

Then Idec(X)↓ is a finitely-represented invariant for
Ŵ1 ×W2 ∼= Ŵ1 × Ŵ2.

This finitely-represented invariant gives rise to a regular
separator.

18



Proof

Putting everything together:

IfW1,W2 are disjoint,W1 ×W2 admits an invariant X.

Then Idec(X)↓ is a finitely-represented invariant for
Ŵ1 ×W2 ∼= Ŵ1 × Ŵ2.

This finitely-represented invariant gives rise to a regular
separator.

We have shown:

Theorem
If two WSTS languages are disjoint,
one of them finitely branching or deterministic or ω2,
then they are regularly separable.

18



Proof details:
From fin.-rep. invariants to regular separators



From invariants to separability

Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.

19



From invariants to separability

Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.

Assume Q↓ is invariant.
Idea: Construct separating NFA with Q as states

19



From invariants to separability

Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.

Definition
A = (Q,→,QI,QF) where

QI = {(s, s′) ∈ Q | (c, c′) ⩽ (s, s′) for some (c, c′) initial}
QF = {(s, s′) ∈ Q | s ∈ F1}
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From invariants to separability

Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.

Definition
A = (Q,→,QI,QF) where

QI = {(s, s′) ∈ Q | (c, c′) ⩽ (s, s′) for some (c, c′) initial}
QF = {(s, s′) ∈ Q | s ∈ F1}

(r, r′) ∈ Q

Q ∋ (s, s′)

a
in A

11

a
inW1×W2

// (t, t′) ∈ S1 × S2

⩽
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Behavior of A

•
q0 ↓ •

q1 ↓

•
q2 ↓

•
q3 ↓

•
•

•

•

a

bb
c

a
b c

F1 × S2

A over-approximates the behavior of the product system using
the configurations from Q.
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Proving separability: Inclusion

Lemma
L(W1) ⊆ L(A).
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Proof.
Any run c w−→ d ofW1

synchronizes with the run ofW2 for w

in the run (c, c′) w−→ (d,d′) ofW1 ×W2.
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Proving separability: Inclusion

Lemma
L(W1) ⊆ L(A).

Proof.
Any run c w−→ d ofW1

synchronizes with the run ofW2 for w

in the run (c, c′) w−→ (d,d′) ofW1 ×W2.

This run can be over-approximated in A.

If d is final inW1,

the over-approximation of (d,d′) is final in A.
21



Proving separability: Disjointness

Lemma
L(W2) ∩ L(A) = �.
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Proving separability: Disjointness

Lemma
L(W2) ∩ L(A) = �.
Proof.
Any run of A for w over-approximates

in the second component the unique run ofW2 for w.
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Proving separability: Disjointness

Lemma
L(W2) ∩ L(A) = �.
Proof.
Any run of A for w over-approximates

in the second component the unique run ofW2 for w.

If w ∈ L(W2) ∩ L(A)

then some run of A reaches a state (q,q′) with

- q final inW1 (def. of QI)

- q′ final inW2 (w ∈ L(W2) + argument above)
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Proving separability: Disjointness

Lemma
L(W2) ∩ L(A) = �.
Proof.
Any run of A for w over-approximates

in the second component the unique run ofW2 for w.

If w ∈ L(W2) ∩ L(A)

then some run of A reaches a state (q,q′) with

- q final inW1 (def. of QI)

- q′ final inW2 (w ∈ L(W2) + argument above)

Contradiction to F1 × F2 ∩ Q ↓= �! 22



Proof details:
The ideal completion and fin.-rep. invariants



Finitely represented invariants

Lemma
Let U ⊆ S be an upward-closed set in a wqo.

There is a finite set Umin such that U = Umin ↑ .

A similar result for downward-closed subsets and maximal
elements does not hold.
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Finitely represented invariants

Lemma
Let U ⊆ S be an upward-closed set in a wqo.

There is a finite set Umin such that U = Umin ↑ .

A similar result for downward-closed subsets and maximal
elements does not hold.

Example:
Consider N in (N,⩽)

Intuitively, N = ω↓
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Finitely represented invariants

Lemma
Let U ⊆ S be an upward-closed set in a wqo.

There is a finite set Umin such that U = Umin ↑ .

A similar result for downward-closed subsets and maximal
elements does not hold.

Consequence:
Finitely represented invariants may not exist!

Solution:
Move to a language-equivalent system for which they always
exist.

23



Ideals

Let (S,⩽) be a wqo
An ideal I ⊆ S is a set that is
• non-empty
• downward-closed

• directed: ∀x, y ∈ I ∃z ∈ I : x ⩽ z, y ⩽ z
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Ideals

Let (S,⩽) be a wqo
An ideal I ⊆ S is a set that is
• non-empty
• downward-closed
• directed: ∀x, y ∈ I ∃z ∈ I : x ⩽ z, y ⩽ z

Example 1:
For each c ∈ S, c↓ is an ideal
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Ideals

Let (S,⩽) be a wqo
An ideal I ⊆ S is a set that is
• non-empty
• downward-closed
• directed: ∀x, y ∈ I ∃z ∈ I : x ⩽ z, y ⩽ z

Example 2:
Consider (Nk,⩽)

The ideals are the sets u↓ for u ∈ (N ∪ {ω})k

24



Ideal decomposition

Lemma ([KP92])
Let (S,⩽) be a wqo

For D ⊆ S downward closed, let Idec(D) be the set of
inclusion-maximal ideals in D

Idec(D) is unique, finite and we have

D =
∪
Idec(D)

25



Ideal completion

Definition ([BFM14,FG12])
LetW = (S,⩽, T, I, F) WSTS

Its ideal completion is
Ŵ = ({I ⊆ S | I ideal},⊆, T̂, Idec(I↓), F̂) with

F̂ = {I | I ∩ F ̸= �}
T̂ defined by PostŴa (I) = Idec

(
PostWa (I)↓

)

26
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Ŵ = ({I ⊆ S | I ideal},⊆, T̂, Idec(I↓), F̂) with

F̂ = {I | I ∩ F ̸= �}
T̂ defined by PostŴa (I) = Idec

(
PostWa (I)↓

)
Lemma

• Ŵ finitely branching

• W deterministic =⇒ Ŵ deterministic
• L(Ŵ) = L(W)
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Using the ideal completion

Proposition
If X is an inductive invariant forW ,

then its ideal decomposition Idec(X)↓

is a finitely-represented inductive invariant for Ŵ .
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Using the ideal completion

Proposition
If X is an inductive invariant forW ,
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Proof.
Property of being an inductive invariant carries over

Any set of the shape Idec(Y)↓ is finitely-represented in Ŵ
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Using the ideal completion

Proposition
If X is an inductive invariant forW ,

then its ideal decomposition Idec(X)↓

is a finitely-represented inductive invariant for Ŵ .

Proof.
Property of being an inductive invariant carries over

Any set of the shape Idec(Y)↓ is finitely-represented in Ŵ

Result in particular applies to Cover = Post∗(I1 × I2)↓ .

Remark: Ŵ is not necessarily a WSTS.
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Conclusion



Regular separability for WSTS languages

Theorem
If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω2,

then they are regularly separable.
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Also in the paper...

1. A similar result for downward-compatible WSTS

Theorem
If two DWSTS languages, one of them deterministic, are
disjoint, then they are regularly separable
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Also in the paper...

1. A similar result for downward-compatible WSTS

Theorem
If two DWSTS languages, one of them deterministic, are
disjoint, then they are regularly separable

2. A size estimation for the case of Petri nets
Theorem
Given two Petri nets, their coverability languages can be
separated by

• Upper bound: an NFA of triply-exponential size
• Lower bound: a DFA of triply-exponential size
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Open problems

Expressibility results:
Are the inclusions strict?

ω2 −WSTS languages ⊆ det. WSTS languages
deterministic WSTS languages ⊆ all WSTS languages

Separability results:
Are disjoint WSTS languages always regularly separable?

Crucial for both problems:
Expressiveness of infinitely-branching Rado WSTS
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Thank you!



Questions?
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