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Separability of 7 by S

Given:  Languages £,K C ¥* from F

Decide: Isthere R C X* from S such that
LCR, KNR=g?

Commonly studied:

- S C F=REG
e.g. S = star-free languages
L Separability is decidable [PZ16]
- S=REGC F
Regular separability
(related work in a second)



Regular separability

Regular separability of 7

Given:  languages £,K C ©* from F

Decide: Isthere R C X* regular such that
LCR, KNR=g?

Observation:

Problem is symmetric in the input:
If LCR, KNR=g,

then KCR, LNR=g.

L call £, K regularly separable if separator R exists.



Regular separability

Regular separability of 7

Given:  languages £,K C ©* from F

Decide: Isthere R C X* regular such that
LCR, KNR=g?

Disjointness is always a necessary condition for any kind of
separability.

It is not always sufficient, consider

L=a"b", K=CL.
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Regular separability - A map
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WSTS

PNCOV

open, [CCLP17a,CCLP17b]

PNREACH

non-trivial OCN [cu7]

REG

trivial
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Well quasi orders

Consider (X, <) quasi order (reflexive, transitive)

(S, <) well quasi order (wgo)
iff  upward-closed sets have
iff all antichains and descending chains are finite

Lemma (Dickson’s lemma)
(N, <R is a well quasi order

(1,2) £ (21) < (2,2)
Lemma (Higman'’s lemma)
(X*,<*) is a well quasi order

<* ABRACADABRA 6
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W= (S5<,T,I,F)

(S, <) states wqo

TC S x X x S labeled transitions

| C Sinitial states

F C S final states, upward-closed
Monotonicity / Simulation property:

N E)]
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Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FSO01].

W= (S5<,T,I,F)

(S, <) states wqo
TCSx X x Slabeled transitions
| C Sinitial states

F C S final states, upward-closed

Coverability language

LOW) = {vv ez ‘ ¢; = ¢ for some ¢; € I, ¢r € F}
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Well structured transiton systems

Consider a labeled version of well-structured transition
systems (WSTS) [F87,ACJT96,FSO01].

W= (S5<,T,I,F)

Example 1:
Labeled Petri net with covering Mr as acceptance condition
induces WSTS
(NP, <P, T, Mg, Ms1) .
Example 2:

Labeled lossy channel system (LCS) [AJ93] induces a WSTS.
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The result & its consequences

Theorem
If two WSTS languages, one of them ,are
disjoint, then they are

Corollary

If a language and its complement are finitely-branching WSTS
languages, they are

This generalizes earlier results for Petri net coverability

languages. [MKR98a,MKR98b]

Corollary
of finitely-branching WSTS beyond REG is closed

under complement.
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Our result - Recall

Theorem
If two WSTS languages, one of them ,are
disjoint, then they are

W finitely branching: | finite, Posty(c) finite for all ¢

How much of a restriction is it to assume ?

What do we gain by assuming ?



Expressibility |

Proposition
Languages of w?-WSTS

C Languages of finitely branching WSTS.

(S, <) w? wao
iff  (PH(S), <) wqo
iff (S,<) does not embed the Rado order

Our result applies to !

10



Expressibility Il

Proposition
Languages of finitely branching WSTS

= Languages of deterministic WSTS.

Sufficient to show:

Theorem
If two WSTS languages, one of them ,are
disjoint, then they are

n
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Proof approach

Theorem
If two WSTS languages, one of them ,are
disjoint, then they are

Proof approach:

Relate separability to the existence of certain

Separability talks about the languages,
Invariants talk about the state space!

12



Inductive invariant

Inductive invariant [MP95] X
for WSTS W:

(1
(2

(3) FNX=g
(4) Posts(X) C X

X C S downward-closed

)
) |
)
)
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Inductive invariant

Inductive invariant [MP95] X

for WSTS W

(1) X € S downward-closed «

() 1

(3) FNX=g

(4) Posts(X) C X \ HERUS
Lemma

L(W) = & Iff inductive invariant for W exists.

13
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Finitely represented invariants

The desired implication does not hold.
Call an invariant X finitely represented if X = Q | for Q finite

Recall:

(S, <) well quasi order (wqo)
iff upward-closed sets have finitely many minimal elements.

No such statement for downward-closed sets and maximal
elements!

15



Finitely represented invariants

The desired implication does not hold.
Call an invariant X if X =Q | for Q finite

We can show:
Theorem
Let Wy, W5 WSTS, W,

If Wy x W5 admits a finitely-represented inductive invariant,
then £(Wy) and L(W,) are regularly separable.

15
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Finitely represented invariants

Solution: Ideals
Definition
For WSTS W, let 17\/\ be its . [KP92][BFM14,FG12]

Lemma
LOWV) = LW).

Proposition

If X is an inductive invariant for W,

then its IDEC(X){

Is a inductive invariant for W.
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This finitely-represented invariant gives rise to a regular
separator.



Putting everything together:

If Wi, W, are disjoint, Wy x W, admits an invariant X.

Then IDEC(X) ] is a finitely-represented invariant for
W1 XW22W1 ><W2.

This finitely-represented invariant gives rise to a regular
separator.

We have shown:

Theorem
If two WSTS languages are disjoint,
one of them or or we,

then they are



Proof details:
From fin.-rep. invariants to regular separators



From invariants to separability

Theorem
Let Wy, Wh WSTS, W,

If Wi x W5 admits a finitely-represented inductive invariant,
then L(Wy) and L(W,) are regularly separable.

19



From invariants to separability

Theorem
Let Wy, Wh WSTS, W,

If Wi x W5 admits a finitely-represented inductive invariant,
then L(Wy) and L(W,) are regularly separable.

Assume Q| is invariant.
Idea: Construct separating NFA with Q as states

19
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From invariants to separability

Theorem
Let Wy, Wh WSTS, W,

If Wi x W5 admits a finitely-represented inductive invariant,
then L(Wy) and L(W,) are regularly separable.

Definition
A= (Q,—,Q,QF) where
Q ={(s,8') € Q| (c,c) < (s,5) for some (c, ) initial}
0r={(s,5) €Q|s€F}
. (r,r)eQ

in A v/

/ a /
QS(S,S)m(t,t)GS']XSZ



Behavior of A

L Qli Qgi
qg i F1 XSz .

A over-approximates the behavior of the product system using
the configurations from Q.
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Proving separability: Inclusion

Lemma
L(W7) C L(A).
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Proving separability: Inclusion

Lemma

LWh) C L(A).

Proof.

Any run ¢ <% d of W,

synchronizes with the run of W, for w

in the run (c,c’) = (d, d’) of Wy x Wh.
This run can be over-approximated in A.

If d is final in W,

the over-approximation of (d,d’) is final in A. O
21



Proving separability: Disjointness

Lemma
LW))NL(A) = 2.
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Proving separability: Disjointness

Lemma
LW))NL(A) = 2.

Proof.
Any run of A for w over-approximates

in the second component the run of W for w.

Ifwe LOW:)N L(A)

then some run of A reaches a state (g, q’) with
- g final in Wy (def. of Q)

- g’ finalin W, (w € £L(W) + argument above)
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Proving separability: Disjointness

Lemma
LW))NL(A) = 2.

Proof.
Any run of A for w over-approximates

in the second component the run of W for w.

Ifwe LOW:)N L(A)

then some run of A reaches a state (g, q’) with
- g final in Wy (def. of Q)

- g’ finalin W, (w € £L(W) + argument above)

toF xFHLNQ|l=g! 22



Proof details:
The ideal completion and fin.-rep. invariants



Finitely represented invariants

Lemma
Let U C S be an upward-closed set in a wqo.

There is a finite set such that U = UpinT .

A similar result for downward-closed subsets and maximal
elements does not hold.
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Finitely represented invariants

Lemma
Let U C S be an upward-closed set in a wqo.

There is a finite set such that U = UpinT .

A similar result for downward-closed subsets and maximal
elements does not hold.

Example:
Consider N in (N, <)

Intuitively, N=w|

23



Finitely represented invariants

Lemma
Let U C S be an upward-closed set in a wqo.

There is a finite set such that U = UpinT .

A similar result for downward-closed subsets and maximal
elements does not hold.

Consequence:
Finitely represented invariants may not exist!

Solution:

Move to a language-equivalent system for which they always
exist.

23
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Let (S, <) be awqo
AnidealZ C Sis a set that is
* non-empty
- downward-closed
- directed: Vx,y e T3z€ZT: x <2,y <72

Example 2:

Consider (N*, <)
The ideals are the sets u] for u € (NU {w})*

2%



Ideal decomposition

Lemma ([KP92])
Let (S,<) be a wgo

For D C S downward closed, let be the set of
in D
IDEC(D) is and we have

D =|_JIpec(D)

25



Ideal completion

Definition ([BFM14,FG12])
Let W = (S, <, T, 1, F) WSTS

Its is
W = ({T €S| Tideal},C,T,IpEc(/]), F) with
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Ideal completion

Definition ([BFM14,FG12])
Let W = (S, <, T, 1, F) WSTS
Its is
W = ({T €S| Tideal},C,T,IpEc(/]), F) with
F={T|INF+ &)}
7 defined by Post?’(Z) = Ipec(Post?¥ (Z) )

Lemma

c Wﬁnitely branching

- W deterministic —> W deterministic
- LOV) = LW)

26



Using the ideal completion

Proposition
If X'is an forw,
then its IDEC(X){

isa inductive invariant for W.

27



Using the ideal completion

Proposition

If X'is an forw,

then its IDEC(X){

isa inductive invariant for W.
Proof.

Property of being an inductive invariant carries over

Any set of the shape IDEC(Y)] is finitely-represented in W O

27



Using the ideal completion

Proposition

If X'is an forw,

then its IDEC(X){

isa inductive invariant for W.
Proof.

Property of being an inductive invariant carries over

Any set of the shape IDEC(Y)] is finitely-represented in W O

Result in particular applies to Cover = Post*(lh x I2){ .

27



Using the ideal completion

Proposition

If X'is an forw,

then its IDEC(X){

isa inductive invariant for W.
Proof.

Property of being an inductive invariant carries over

Any set of the shape IDEC(Y)] is finitely-represented in W O

Result in particular applies to Cover = Post*(lh x I2){ .

Remark: W is not necessarily a WSTS.
27
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Regular separability for WSTS languages

Theorem
If two WSTS languages are disjoint,

one of them or or w?,

then they are

28
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Also in the paper...

1. A similar result for downward-compatible WSTS

Theorem

If two DWSTS languages, one of them ,are
disjoint, then they are

2. A size estimation for the case of Petri nets

Theorem
Given two Petri nets, their coverability languages can be
separated by

- Upper bound: an NFA of triply-exponential size
- Lower bound: a DFA of triply-exponential size

29
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Open problems

Expressibility results:
Are the inclusions strict?

w® — WSTS languages C det. WSTS languages
deterministic WSTS languages C all WSTS languages

Separability results:
Are disjoint WSTS languages always regularly separable?

Crucial for both problems:
Expressiveness of infinitely-branching Rado WSTS

30



Thank you!



Questions?
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