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Regular separability

Regular separability of F
Given: Languages L,K ⊆ Σ∗ from class F .
Decide: Is there R ⊆ Σ∗ regular such that

L ⊆ R, K ∩R = �?
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Regular separability

Regular separability of F
Given: Languages L,K ⊆ Σ∗ from class F .
Decide: Is there R ⊆ Σ∗ regular such that

L ⊆ R, K ∩R = �?

EL K

Disjointness is necessary!
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Related work

REG

VPL

DCFL

CFL

OCN

OCA

PNCOV

PNREACHWSTS

trivial

[SW76]open, [CCLP17a,CCLP17b]
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trivial

[SW76]

[K16]

[CL17]

[CL17]non-trivial

open, [CCLP17a,CCLP17b]this talk
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Well structured transiton systems

Labeled well-structured transition systems (WSTS) [F87,ACJT96,FS01]

W = (S,⩽, T, I, F)

(S,⩽) states, well-quasi ordered
T ⊆ S× Σ× S labeled transitions
I ⊆ S initial states
F ⊆ S final states, upward-closed
(Strong) upward compatibility:

s′ a // r′ (∃)

s

⪯

a // r

⪯
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Well structured transiton systems

Labeled well-structured transition systems (WSTS) [F87,ACJT96,FS01]

W = (S,⩽, T, I, F)

(S,⩽) states, well-quasi ordered
T ⊆ S× Σ× S labeled transitions
I ⊆ S initial states
F ⊆ S final states, upward-closed

(Strong) upward compatibility:

Coverability language

L(W) =
{
w ∈ Σ∗

∣∣∣ sI w−→ sF for some sI ∈ I, sF ∈ F
}
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Well structured transiton systems

Labeled well-structured transition systems (WSTS) [F87,ACJT96,FS01]

W = (S,⩽, T, I, F)

(S,⩽) states, well-quasi ordered
T ⊆ S× Σ× S labeled transitions
I ⊆ S initial states
F ⊆ S final states, upward-closed

(Strong) upward compatibility:

Examples:
• Petri nets with covering a marking as acceptance condition
• Transfer nets, reset nets, …
• Lossy channel systems
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The result

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.
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The result

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.

Corollary
If a language and its complement are finitely-branching WSTS
languages, then they are necessarily regular.

Generalizes earlier results for PNCOV [MKR98a,MKR98b]
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The result

Theorem
If two WSTS languages, one of them finitely branching, are
disjoint, then they are regularly separable.

Corollary
If a language and its complement are finitely-branching WSTS
languages, then they are necessarily regular.

Generalizes earlier results for PNCOV [MKR98a,MKR98b]

Corollary
No subclass of the class of languages of finitely-branching
WSTS beyond REG is closed under complement. 5
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Expressibility

How much of a restriction is it to assume finite branching?
What do we gain by it?
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Theorem
Languages of ω2-WSTS
(1)
⊆ Languages of finitely-branching WSTS
(2)
= Languages of deterministic WSTS
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Expressibility

How much of a restriction is it to assume finite branching?
What do we gain by it?

Theorem
Languages of ω2-WSTS
(1)
⊆ Languages of finitely-branching WSTS
(2)
= Languages of deterministic WSTS

WSTS is ω2 iff state space does not embed the Rado order.

(1) shows that result applies to all WSTS of practical interest.
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Expressibility

How much of a restriction is it to assume finite branching?
What do we gain by it?

Theorem
Languages of ω2-WSTS
(1)
⊆ Languages of finitely-branching WSTS
(2)
= Languages of deterministic WSTS

(2) proves that it is sufficient to show:

Theorem
If two WSTS languages, one of them deterministic, are
disjoint, then they are regularly separable
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Proof sketch



Proof approach

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has inductive invariant

!
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Inductive invariant

Inductive invariant [MP95] X
for WSTSW :
(1) X ⊆ S downward-closed
(2) I ⊆ X
(3) F ∩ X = �
(4) PostΣ(X) ⊆ X I

F

Post∗

Pre∗

X

•
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Inductive invariant

Inductive invariant [MP95] X
for WSTSW :
(1) X ⊆ S downward-closed
(2) I ⊆ X
(3) F ∩ X = �
(4) PostΣ(X) ⊆ X I

F

Post∗

Pre∗

X

•

Lemma
L(W) = � iff inductive invariant forW exists.
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Proof approach
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W1 ×W2 has inductive invariant
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Finitely represented invariants

Call an invariant X finitely represented if X = Q ↓ for Q finite
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Finitely represented invariants

Call an invariant X finitely represented if X = Q ↓ for Q finite

Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.
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Finitely represented invariants

Call an invariant X finitely represented if X = Q ↓ for Q finite

Theorem
LetW1,W2 WSTS,W2 deterministic.

IfW1 ×W2 admits a finitely-represented inductive invariant,
then L(W1) and L(W2) are regularly separable.

Let Q↓ be an invariant with Q finite.
Construct NFA with states Q.
NFA over-approximatesW1 ×W2.
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Proof approach

L(W1),L(W2) reg. sep L(W1) ∩ L(W2) = L(W1 ×W2) = �

W1 ×W2 has fin.-rep. invariant

!
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Proof approach
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Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals
Definition
For WSTSW , let Ŵ be its ideal completion [KP92][BFM14,FG12]

Lemma
L(W) = L(Ŵ).
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Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals
Definition
For WSTSW , let Ŵ be its ideal completion [KP92][BFM14,FG12]

Lemma
L(W) = L(Ŵ).

Proposition
If X is an inductive invariant forW ,
then its ideal decomposition IDEC(X)↓
is a finitely-represented inductive invariant for Ŵ .
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Proof

Putting everything together:
LetW1,W2 be language-disjoint WSTS,W2 deterministic.

W1 ×W2 admits an invariant X.

Then IDEC(X)↓ is a finitely-represented invariant for
Ŵ1 ×W2 ∼= Ŵ1 × Ŵ2.

This gives rise to a regular separator.
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Conclusion

Theorem
If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω2,

then they are regularly separable.
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Conclusion

Theorem
If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω2,

then they are regularly separable.

Can we drop the assumption of finite branching resp. ω2 ?

Related problem:
Expressiveness of infinitely-branching non-ω2 WSTS?
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Thank you!



Questions?
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