
Certificates for automata in a hostile environment

Sebastian Muskalla

May 11, 2023

PhD defense



Table of contents

Title
Three examples

− Practical relevance
− Theoretical results

1



The title

Certificates for automata
in a hostile environment

12

3

2



The title

Certificates for automata
in a hostile environment

12

3

2



The title

Certificates for automata
in a hostile environment

12

3

2



The title

Certificates for automata
in a hostile environment

12

3

2



Automata theory



Automata theory

Theoretical computer science:

Which problems can be solved by computers in principle?

Concept of self-application

Study verification:

Which problems about computer (programs)
can be solved by computer (programs)?

3



Automata theory

Theoretical computer science:

Which problems can be solved by computers in principle?

Concept of self-application

Study verification:

Which problems about computer (programs)
can be solved by computer (programs)?

3



Automata theory

Theoretical computer science:

Which problems can be solved by computers in principle?

Concept of self-application

Study verification:

Which problems about computer (programs)
can be solved by computer (programs)?

3



Automata theory

Verification problem

Verification problem for specification ϕ

Given: Program P.
Question: Does behavior of P satisfy ϕ, P ⊧ ϕ?

Automated verification:

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

4



Automata theory

Verification problem

Verification problem for specification ϕ

Given: Program P.
Question: Does behavior of P satisfy ϕ, P ⊧ ϕ?

Automated verification:

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

4



Automata theory

Verification problem

Verification problem for specification ϕ

Given: Program P.
Question: Does behavior of P satisfy ϕ, P ⊧ ϕ?

Automated verification:

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Theorem ([Church 1935/36, Turing 1936])
The verification problem is undecidable for some specification.

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

4



Automata theory

Verification problem

Verification problem for specification ϕ

Given: Program P.
Question: Does behavior of P satisfy ϕ, P ⊧ ϕ?

Automated verification:

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications. 4



Automata theory

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

Two loopholes exist:

1. Problem is just undecidable in full generality
− We may be able to verify some programs
(We come back to this later)

2. Problem undecidable if input are general computer programs
− Study restricted computer models: Automata

5



Automata theory

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

Two loopholes exist:
1. Problem is just undecidable in full generality

− We may be able to verify some programs
(We come back to this later)

2. Problem undecidable if input are general computer programs
− Study restricted computer models: Automata

5



Automata theory

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

Two loopholes exist:
1. Problem is just undecidable in full generality

− We may be able to verify some programs
(We come back to this later)

2. Problem undecidable if input are general computer programs
− Study restricted computer models: Automata

5



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS
General computers programs
Unbounded unrestricted storage
high expressiveness
undecidability results apply

Finite-state systems
low expressiveness
good algorithmic properties

Restricted unbounded storage

Bounded storage + recursion

Bounded storage + concurrency
Language-theoretic approach:
Associate language L(A) to each system A

Emptiness: L(A) = ∅?

Undecidable (Π0
1-complete)

NL-complete

P-complete

EXPSPACE-complete

6



Automata theory

Verification problems may be decidable if we consider automata as
input

How to solve general verification problems?

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Abstract to an automaton first!

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

7



Automata theory

Verification problems may be decidable if we consider automata as
input

How to solve general verification problems?

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Abstract to an automaton first!

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

7



Automata theory

Verification problems may be decidable if we consider automata as
input

How to solve general verification problems?

P
yes, P ⊧ ϕ

no, P /⊧ ϕ

Verifier

Abstract to an automaton first!

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

7



Automata theory

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

Does this always work?

NO!

Need to pick abstraction carefully
− Verification problem needs to be (efficiently) decidable
− Expressiveness needs to be high enough so that we can model
the behavior relevant to the specification

− Need some relation between P and AP ,
e.g. overapproximation: L(P) ⊆ L(AP)

8



Automata theory

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

Does this always work?
NO!

Need to pick abstraction carefully

− Verification problem needs to be (efficiently) decidable
− Expressiveness needs to be high enough so that we can model
the behavior relevant to the specification

− Need some relation between P and AP ,
e.g. overapproximation: L(P) ⊆ L(AP)

8



Automata theory

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

Does this always work?
NO!

Need to pick abstraction carefully
− Verification problem needs to be (efficiently) decidable

− Expressiveness needs to be high enough so that we can model
the behavior relevant to the specification

− Need some relation between P and AP ,
e.g. overapproximation: L(P) ⊆ L(AP)

8



Automata theory

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

Does this always work?
NO!

Need to pick abstraction carefully
− Verification problem needs to be (efficiently) decidable
− Expressiveness needs to be high enough so that we can model
the behavior relevant to the specification

− Need some relation between P and AP ,
e.g. overapproximation: L(P) ⊆ L(AP)

8



Automata theory

P AP

yes, AP ⊧ ϕ

no, AP /⊧ ϕ

Abstr.
Decision
procedure
for automata

Does this always work?
NO!

Need to pick abstraction carefully
− Verification problem needs to be (efficiently) decidable
− Expressiveness needs to be high enough so that we can model
the behavior relevant to the specification

− Need some relation between P and AP ,
e.g. overapproximation: L(P) ⊆ L(AP)

8



Automata theory

The automata-theoretic approach to verification

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

9



Certificates



Certificates

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

This is too optimistic!

Problem: We assume that a boolean (yes/no) answer to the
decision problem is sufficient

Need more detailed output!

− Accountability: We don’t want to trust the algorithm blindly
− We often need more than one call of a decision procedure
− Later calls need information computed by earlier ones
e.g. compositional verification, refinement loops (CEGAR)

10



Certificates

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

This is too optimistic!

Problem: We assume that a boolean (yes/no) answer to the
decision problem is sufficient

Need more detailed output!

− Accountability: We don’t want to trust the algorithm blindly
− We often need more than one call of a decision procedure
− Later calls need information computed by earlier ones
e.g. compositional verification, refinement loops (CEGAR)

10



Certificates

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

This is too optimistic!

Problem: We assume that a boolean (yes/no) answer to the
decision problem is sufficient

Need more detailed output!

− Accountability: We don’t want to trust the algorithm blindly
− We often need more than one call of a decision procedure
− Later calls need information computed by earlier ones
e.g. compositional verification, refinement loops (CEGAR)

10



Certificates

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

This is too optimistic!

Problem: We assume that a boolean (yes/no) answer to the
decision problem is sufficient

Need more detailed output!
− Accountability: We don’t want to trust the algorithm blindly

− We often need more than one call of a decision procedure
− Later calls need information computed by earlier ones
e.g. compositional verification, refinement loops (CEGAR)

10



Certificates

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

This is too optimistic!

Problem: We assume that a boolean (yes/no) answer to the
decision problem is sufficient

Need more detailed output!
− Accountability: We don’t want to trust the algorithm blindly
− We often need more than one call of a decision procedure

− Later calls need information computed by earlier ones
e.g. compositional verification, refinement loops (CEGAR)

10



Certificates

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

This is too optimistic!

Problem: We assume that a boolean (yes/no) answer to the
decision problem is sufficient

Need more detailed output!
− Accountability: We don’t want to trust the algorithm blindly
− We often need more than one call of a decision procedure
− Later calls need information computed by earlier ones
e.g. compositional verification, refinement loops (CEGAR)

10



Certificates

We need algorithms that also compute certificates

A
yes + certificate

no + certificate

Decision
procedure

A certificate is additional information justifying the boolean answer

A certificate can be used to check the correctness of the answer

This check should be easier than the original computation

11



Certificates

We need algorithms that also compute certificates

A
yes + certificate

no + certificate

Decision
procedure

A certificate is additional information justifying the boolean answer

A certificate can be used to check the correctness of the answer

This check should be easier than the original computation

11



Certificates

We need algorithms that also compute certificates

A
yes + certificate

no + certificate

Decision
procedure

A certificate is additional information justifying the boolean answer

A certificate can be used to check the correctness of the answer

This check should be easier than the original computation

11



Certificates

We need algorithms that also compute certificates

A
yes + certificate

no + certificate

Decision
procedure

A certificate is additional information justifying the boolean answer

A certificate can be used to check the correctness of the answer

This check should be easier than the original computation

11



The (hostile) environment



The (hostile) environment

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

When abstracting P into AP , we usually forget a part of the system

Example:
− P uses recursion + unbounded storage
− AP comes from a class that only supports bounded storage
− Solution: Abstract away data
− But: This introduces non-determinism

This imprecision may affect verification!

12



The (hostile) environment

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

When abstracting P into AP , we usually forget a part of the system

Example:
− P uses recursion + unbounded storage
− AP comes from a class that only supports bounded storage
− Solution: Abstract away data
− But: This introduces non-determinism

This imprecision may affect verification!

12



The (hostile) environment

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

When abstracting P into AP , we usually forget a part of the system

Example:
− P uses recursion + unbounded storage
− AP comes from a class that only supports bounded storage
− Solution: Abstract away data
− But: This introduces non-determinism

This imprecision may affect verification!

12



The (hostile) environment

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

When abstracting P into AP , we usually forget a part of the system

Example:
− P uses recursion + unbounded storage
− AP comes from a class that only supports bounded storage
− Solution: Abstract away data
− But: This introduces non-determinism

This imprecision may affect verification!
12



The (hostile) environment

The automaton lives AP in an environment

− Parts of system P abstracted away in AP

− Parts of the system that were never modeled to begin with:
− User input
− External components

− Compositional verification
− Focus on one component
− Rest of the components becomes the environment

13



The (hostile) environment

The automaton lives AP in an environment
− Parts of system P abstracted away in AP

− Parts of the system that were never modeled to begin with:
− User input
− External components

− Compositional verification
− Focus on one component
− Rest of the components becomes the environment

13



The (hostile) environment

The automaton lives AP in an environment
− Parts of system P abstracted away in AP

− Parts of the system that were never modeled to begin with:
− User input
− External components

− Compositional verification
− Focus on one component
− Rest of the components becomes the environment

13



The (hostile) environment

The automaton lives AP in an environment
− Parts of system P abstracted away in AP

− Parts of the system that were never modeled to begin with:
− User input
− External components

− Compositional verification
− Focus on one component
− Rest of the components becomes the environment

13



The (hostile) environment

P AP

AP ⊧ ϕ ⟹ P ⊧ ϕ

AP /⊧ ϕ ⟹ P /⊧ ϕ

Abstr.
Decision
procedure
for automata

The environment is hostile because when we apply a decision
procedure to AP , it may break the correspondence between
• correctness of AP (AP ⊧ ϕ / AP /⊧ ϕ)
• correctness of P (P ⊧ ϕ / P /⊧ ϕ)

14



Certificates for automata in a hostile environment

In order to enable the automata-theoretic approach to verification,
we need decision procedures for automata that produce
certificates and are equipped to take the (hostile) environment
into account.

This thesis aims to provide such decision procedures

15



Certificates for automata in a hostile environment

In order to enable the automata-theoretic approach to verification,
we need decision procedures for automata that produce
certificates and are equipped to take the (hostile) environment
into account.

This thesis aims to provide such decision procedures

15



1st example:
Unreliable communication
& Language closures



Unreliable communication

Program sending messages

over a lossy network connection

dummyA
word w ∈ L(A)

Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓
We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓

We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓

We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓

We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓

We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓
We are typically given a description of A

Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓
We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A

Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Program sending messages over a lossy network connection

dummyA
Network

w ∈ L(A) w ′ ∈ ???w ′ ∈ L(A)↓
We are typically given a description of A
Specification talks about L(A)↓, the visible behavior of A
Unreliable communication forms an environment that has to
be taken into account

16



Unreliable communication

Same problem can happen even when communication is reliable

dummy x = 0
Shared memory

A

other threads x = 0
x = 1
x = 0

poll

Thread A sees L(other threads)↓

17



Unreliable communication

Same problem can happen even when communication is reliable

dummy x = 0
Shared memory

A

other threads x = 0
x = 1
x = 0

poll

Thread A sees L(other threads)↓

17



Unreliable communication

Opposite problem: Gaininess

?

?

A

L(A)↑

18



Unreliable communication

Opposite problem: Gaininess

?

?

A

L(A)↑

18



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

19



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

Subword ordering: v ⪯ w iff v obtained from w by deleting letters

19



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

Subword ordering: v ⪯ w iff v obtained from w by deleting letters

RADAR⪯ ABRACADABRA

19



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

Subword ordering: v ⪯ w iff v obtained from w by deleting letters

RADAR⪯ ABRACADABRA

Downward closure: L(A)↓= {v ∣ ∃w ∈ L(A)∶ v ⪯ w} (Lossiness)
Upward closure: L(A)↑= {v ∣ ∃w ∈ L(A)∶w⪯ v} (Gaininess)

19



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

Subword ordering: v ⪯ w iff v obtained from w by deleting letters

RADAR⪯ ABRACADABRA

Downward closure: L(A)↓= {v ∣ ∃w ∈ L(A)∶ v ⪯ w} (Lossiness)
Upward closure: L(A)↑= {v ∣ ∃w ∈ L(A)∶w⪯ v} (Gaininess)

Theorem ([Haines 1969],[Abdulla et al. 2004])
L(A)↓,L(A)↑ always simply regular.

19



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

Subword ordering: v ⪯ w iff v obtained from w by deleting letters

RADAR⪯ ABRACADABRA

Downward closure: L(A)↓= {v ∣ ∃w ∈ L(A)∶ v ⪯ w} (Lossiness)
Upward closure: L(A)↑= {v ∣ ∃w ∈ L(A)∶w⪯ v} (Gaininess)

Theorem ([Haines 1969],[Abdulla et al. 2004])
L(A)↓,L(A)↑ always simply regular.
Regular languages can be represented by finite automata

19



Closures

Environment turns L(A) into L(A)↓ resp. L(A)↑
How to design a theoretical model?

Subword ordering: v ⪯ w iff v obtained from w by deleting letters

RADAR⪯ ABRACADABRA

Downward closure: L(A)↓= {v ∣ ∃w ∈ L(A)∶ v ⪯ w} (Lossiness)
Upward closure: L(A)↑= {v ∣ ∃w ∈ L(A)∶w⪯ v} (Gaininess)

Theorem ([Haines 1969],[Abdulla et al. 2004])
L(A)↓,L(A)↑ always simply regular.
Regular languages can be represented by finite automata

But: Closures are not necessarily effectively regular 19



Closures

Computing the downward closure
Given: Automaton A.
Compute: Finite automaton B with L(B) = L(A)↓
Computing the upward closure
Given: Automaton A.
Compute: Finite automaton B with L(B) = L(A)↑

Computing closure is taking the environment into account

Finite automaton can serve as certificate

20



Closures

Computing the downward closure
Given: Automaton A.
Compute: Finite automaton B with L(B) = L(A)↓
Computing the upward closure
Given: Automaton A.
Compute: Finite automaton B with L(B) = L(A)↑

Computing closure is taking the environment into account

Finite automaton can serve as certificate

20



Closures

Computing the downward closure
Given: Automaton A.
Compute: Finite automaton B with L(B) = L(A)↓
Computing the upward closure
Given: Automaton A.
Compute: Finite automaton B with L(B) = L(A)↑

Computing closure is taking the environment into account

Finite automaton can serve as certificate

20



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Computing L(A)↓
Linear

Uncomputable

Exponential [vL 1976] [GHK 2007]

Computable [HKO 2016]

Uncomputable [Mayr 2003]

Computable [HMW 2010]

Computable, size?

21



Closures

Petri nets

− a finite automaton run by
multiple threads

− number of threads is
unbounded

− threads can spawn, die,
synchronize at runtime

Limitation: Cannot check
non-existence of threads

Good for modelling concurrent
systems

22



Closures

Petri nets
− a finite automaton run by
multiple threads

− number of threads is
unbounded

− threads can spawn, die,
synchronize at runtime

Limitation: Cannot check
non-existence of threads

Good for modelling concurrent
systems

22



Closures

Petri nets
− a finite automaton run by
multiple threads

− number of threads is
unbounded

− threads can spawn, die,
synchronize at runtime

Limitation: Cannot check
non-existence of threads

Good for modelling concurrent
systems

22



Closures

Petri nets
− a finite automaton run by
multiple threads

− number of threads is
unbounded

− threads can spawn, die,
synchronize at runtime

Limitation: Cannot check
non-existence of threads

Good for modelling concurrent
systems

22



Closures

Petri nets

Compute L(A)↓ non-prim. rec. [HMW 2010]

Compute L(A)↑ ???

SRE ⊆ L(A)↓ EXPSPACE-compl. NP-compl.

SRE ⊆ L(A)↑ EXPSPACE-compl. NP-compl.

23



Closures

Petri nets

Compute L(A)↓ non-prim. rec. [HMW 2010]

Compute L(A)↑ doubly exponential

SRE ⊆ L(A)↓ EXPSPACE-compl. NP-compl.

SRE ⊆ L(A)↑ EXPSPACE-compl. NP-compl.

23



Closures

Petri nets BPP nets

Compute L(A)↓ non-prim. rec. [HMW 2010] exponential

Compute L(A)↑ doubly exponential exponential

SRE ⊆ L(A)↓ EXPSPACE-compl. NP-compl.

SRE ⊆ L(A)↑ EXPSPACE-compl. NP-compl.

23



Closures

Petri nets BPP nets

Compute L(A)↓ non-prim. rec. [HMW 2010] exponential

Compute L(A)↑ doubly exponential exponential

SRE ⊆ L(A)↓ EXPSPACE-compl. NP-compl.

SRE ⊆ L(A)↑ EXPSPACE-compl. NP-compl.

23



Closures

Petri nets BPP nets

Compute L(A)↓ non-prim. rec. [HMW 2010] exponential

Compute L(A)↑ doubly exponential exponential

SRE ⊆ L(A)↓ EXPSPACE-compl. NP-compl.

SRE ⊆ L(A)↑ EXPSPACE-compl. NP-compl.

Theorem
It is decidable whether L(finite automaton) ⊆ L(Petri net).

23



Closures

Petri nets BPP nets

Compute L(A)↓ non-prim. rec. [HMW 2010] exponential

Compute L(A)↑ doubly exponential exponential

SRE ⊆ L(A)↓ EXPSPACE-compl. NP-compl.

SRE ⊆ L(A)↑ EXPSPACE-compl. NP-compl.

Theorem
It is decidable whether L(finite automaton) ⊆ L(Petri net).
Theorem
It is decidable whether L(PN) = L(PN)↓ resp. L(PN) = L(PN)↑.

23



Closures

Part III. of the thesis

Publication:

M. F. Atig, R. Meyer, S. M., and P. Saivasan
On the upward/downward closure of Petri nets
In: MFCS 2017, volume 83 of LIPIcs, pages 49:1–49:14

24



2nd example:
Compositional verification
& Regular separability



Compositional verification

Comp1 Comp2

Concurrent system

25



Compositional verification

Comp1 Comp2

Concurrent system

State explosion problem

#LoC(Comp1 ∣∣Comp2) = #LoC(Comp1) + #LoC(Comp2)
#States(Comp1 ∣∣Comp2) = #States(Comp1) ∗ #States(Comp2)

25



Compositional verification

Comp1 Comp2

Concurrent system

State explosion problem

#LoC(Comp1 ∣∣Comp2) = #LoC(Comp1) + #LoC(Comp2)
#States(Comp1 ∣∣Comp2) = #States(Comp1) ∗ #States(Comp2)

25



Compositional verification

Comp1 Comp2

Concurrent system

State explosion problem

#LoC(Comp1 ∣∣Comp2) = #LoC(Comp1) + #LoC(Comp2)
#States(Comp1 ∣∣Comp2) = #States(Comp1) ∗ #States(Comp2)

Solution: Compositional verification
verify each component separately

25



Compositional verification

Comp1 Comp2

Concurrent system

Assume-guarantee reasoning [Jones 1983]

25



Compositional verification

Comp1 Comp2

Concurrent system

Assume-guarantee reasoning [Jones 1983]⟨Assume⟩ Comp ⟨Guarantee⟩

satisfied if

25



Compositional verification

Comp1 Comp2

Concurrent system

Assume-guarantee reasoning [Jones 1983]⟨Assume⟩ Comp ⟨Guarantee⟩ satisfied if
∀Env∶ Comp ∣∣Env ⊧ Assume ⟹ Comp ∣∣Env ⊧ Guarantee

25



Compositional verification

Comp1 Comp2

Concurrent system

Assume-guarantee reasoning [Jones 1983]⟨Assume⟩ Comp ⟨Guarantee⟩ satisfied if
∀Env∶ Comp ∣∣Env ⊧ Assume ⟹ Comp ∣∣Env ⊧ Guarantee
Asymmetric proof rule for two components:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

When checking Comp2:
Environment: Comp1
Certificate: Assume

25



Compositional verification

Comp1 Comp2

Concurrent system

Assume-guarantee reasoning [Jones 1983]⟨Assume⟩ Comp ⟨Guarantee⟩ satisfied if
∀Env∶ Comp ∣∣Env ⊧ Assume ⟹ Comp ∣∣Env ⊧ Guarantee
Asymmetric proof rule for two components:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

When checking Comp2:
Environment: Comp1
Certificate: Assume

25



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
How to express this using languages?

26



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
How to express this using languages?

First simplification:

⟨Assume⟩ Comp ⟨Guarantee⟩ satisfied if
∀Env∶ Comp ∣∣Env ⊧ Assume ⟹ Comp ∣∣Env ⊧ Guarantee

26



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
How to express this using languages?

First simplification:

⟨Assume⟩ Comp ⟨Guarantee⟩ satisfied if
Comp ⊧ Assume ⟹ Comp ⊧ Guarantee

In particular:

⟨true⟩ Comp ⟨Guarantee⟩ if Comp ⊧ Guarantee.

26



Compositional verification

Comp1 ∣∣Comp2 ⊧ Guarantee
How to express this using languages?

26



Compositional verification

Comp1 ∣∣Comp2 ⊧ Guarantee
How to express this using languages?

Second simplification:
Comp ⊧ Spec ⟺ L(Comp) ⊆ L(Spec) ⟺ L(Comp) ∩ L(Spec) = ∅

Third simplification:
L(Comp1 ∣∣Comp2) = L(Comp1) ∣∣L(Comp2) = L(Comp′1) ∩ L(Comp′2)
Final simplification:
L(Comp′′2) ∶= Comp′2 ∩ L(Guarantee)

26



Compositional verification

L(Comp1 ∣∣Comp2) ∩ L(Guarantee) = ∅

How to express this using languages?

Second simplification:
Comp ⊧ Spec ⟺ L(Comp) ⊆ L(Spec) ⟺ L(Comp) ∩ L(Spec) = ∅

Third simplification:
L(Comp1 ∣∣Comp2) = L(Comp1) ∣∣L(Comp2) = L(Comp′1) ∩ L(Comp′2)
Final simplification:
L(Comp′′2) ∶= Comp′2 ∩ L(Guarantee)

26



Compositional verification

L(Comp1 ∣∣Comp2) ∩ L(Guarantee) = ∅

How to express this using languages?

Second simplification:
Comp ⊧ Spec ⟺ L(Comp) ⊆ L(Spec) ⟺ L(Comp) ∩ L(Spec) = ∅

Third simplification:
L(Comp1 ∣∣Comp2) = L(Comp1) ∣∣L(Comp2) = L(Comp′1) ∩ L(Comp′2)

Final simplification:
L(Comp′′2) ∶= Comp′2 ∩ L(Guarantee)

26



Compositional verification

L(Comp′1) ∩ L(Comp′2) ∩ L(Guarantee) = ∅

How to express this using languages?

Second simplification:
Comp ⊧ Spec ⟺ L(Comp) ⊆ L(Spec) ⟺ L(Comp) ∩ L(Spec) = ∅

Third simplification:
L(Comp1 ∣∣Comp2) = L(Comp1) ∣∣L(Comp2) = L(Comp′1) ∩ L(Comp′2)

Final simplification:
L(Comp′′2) ∶= Comp′2 ∩ L(Guarantee)

26



Compositional verification

L(Comp′1) ∩ L(Comp′2) ∩ L(Guarantee) = ∅

How to express this using languages?

Second simplification:
Comp ⊧ Spec ⟺ L(Comp) ⊆ L(Spec) ⟺ L(Comp) ∩ L(Spec) = ∅

Third simplification:
L(Comp1 ∣∣Comp2) = L(Comp1) ∣∣L(Comp2) = L(Comp′1) ∩ L(Comp′2)
Final simplification:
L(Comp′′2) ∶= Comp′2 ∩ L(Guarantee)

26



Compositional verification

L(Comp′1) ∩ L(Comp′′2) = ∅

How to express this using languages?

Second simplification:
Comp ⊧ Spec ⟺ L(Comp) ⊆ L(Spec) ⟺ L(Comp) ∩ L(Spec) = ∅

Third simplification:
L(Comp1 ∣∣Comp2) = L(Comp1) ∣∣L(Comp2) = L(Comp′1) ∩ L(Comp′2)
Final simplification:
L(Comp′′2) ∶= Comp′2 ∩ L(Guarantee)

26



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L(Comp′1) ∩L(Comp′′2) = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness

27



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L ∩K = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness

27



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L ∩K = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness

27



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L ∩K = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness

27



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L ∩K = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness

27



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L ∩K = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness

27



Compositional verification

⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩
Proof rule:⟨true⟩ Comp1 ⟨Assume⟩⟨Assume⟩ Comp2 ⟨Guarantee⟩⟨true⟩ Comp1 ∣∣Comp2 ⟨Guarantee⟩

L ∩K = ∅

Separability proof rule:

L ⊆ R
K ⊆ R
L ∩K = ∅

L K

R

Comp. verification ∧= finding certificate for intersection emptiness 27



Regular separability

Separability
Given: Languages L,K.
Question: Is there R with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

28



Regular separability

Separability
Given: Languages L,K.
Question: Is there R with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

28



Regular separability

Separability
Given: Languages L,K.
Question: Is there R with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

28



Regular separability

Regular separability for class F
Given: Languages L,K from class F .
Question: Is there R regular with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

28



Regular separability

Regular separability for class F
Given: Languages L,K from class F .
Question: Is there R regular with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

L K

R

28



Regular separability

Regular separability for class F
Given: Languages L,K from class F .
Question: Is there R regular with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

L K

R

28



Regular separability

Regular separability for class F
Given: Languages L,K from class F .
Question: Is there R regular with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

L K

No separator exists! 28



Regular separability

Regular separability for class F
Given: Languages L,K from class F .
Question: Is there R regular with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

L K•

No separator exists! 28



Regular separability

Regular separability for class F
Given: Languages L,K from class F .
Question: Is there R regular with L ⊆ R and K ∩R = ∅?

R is an abstraction of L that is a certificate for L ∩K = ∅.

Only makes sense if R is from a simpler class!

L K•

No separator exists! 28



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Regular separability

Undecidable [SW 1976]

Undecidable [CL 2017]

Undecidable [K 2016]

Decidable [CL 2017]

open

Decidable

Decidable

29



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems

e.g. Petri nets with coverability

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences I:

− Separability is decidable under mild assumptions
− Separator can be constructed under mild assumptions

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences I:
− Separability is decidable under mild assumptions

− Separator can be constructed under mild assumptions

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences I:
− Separability is decidable under mild assumptions
(Just check whether the languages are disjoint)

− Separator can be constructed under mild assumptions

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences I:
− Separability is decidable under mild assumptions
(Just check whether the languages are disjoint)

− Separator can be constructed under mild assumptions

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences II:

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences II:

Corollary
If a language and its complement are WSTS languages,
they are necessarily regular.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences II:

Corollary
If a language and its complement are WSTS languages,
they are necessarily regular.

L L

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Consequences II:

Corollary
If a language and its complement are WSTS languages,
they are necessarily regular.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Proof:
Given L(A1),L(A2) disjoint WSTS languages.

1. Show that we can assume wlog. that A2 is deterministic.
2. Find safe inductive invariant for A1 × A2.
3. Find a finite representation of the invariant using ideals.
4. Convert this representation into an NFA defining a regular
separator.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Proof:
Given L(A1),L(A2) disjoint WSTS languages.
1. Show that we can assume wlog. that A2 is deterministic.

2. Find safe inductive invariant for A1 × A2.
3. Find a finite representation of the invariant using ideals.
4. Convert this representation into an NFA defining a regular
separator.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Proof:
Given L(A1),L(A2) disjoint WSTS languages.
1. Show that we can assume wlog. that A2 is deterministic.
2. Find safe inductive invariant for A1 × A2.

3. Find a finite representation of the invariant using ideals.
4. Convert this representation into an NFA defining a regular
separator.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Proof:
Given L(A1),L(A2) disjoint WSTS languages.
1. Show that we can assume wlog. that A2 is deterministic.
2. Find safe inductive invariant for A1 × A2.
3. Find a finite representation of the invariant using ideals.

4. Convert this representation into an NFA defining a regular
separator.

30



Regular separability

WSTS = class of languages of finitely branching well-structured
transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly
separable.

Proof:
Given L(A1),L(A2) disjoint WSTS languages.
1. Show that we can assume wlog. that A2 is deterministic.
2. Find safe inductive invariant for A1 × A2.
3. Find a finite representation of the invariant using ideals.
4. Convert this representation into an NFA defining a regular
separator.

30



Closures

Part IV. of the thesis

Publication:

W. Czerwiński, S. Lasota, R. Meyer, S. M, K N. Kumar, and P. Saivasan
Regular separability of well-structured transition Systems
In: CONCUR 2018, volume 118 of LIPIcs, pages 35:1–35:18

31



3rd example:
Synthesis
& Games



Synthesis

Verification: Checking whether program is correct

32



Synthesis

Synthesis: Constructing a correct program

32



Synthesis

Synthesis: Constructing a correct program from program template

32



Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

32



Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

if (x == 0)
code1

else
code2

assert(x = 0).code1 ∧
assert(x ≠ 0).code2

32



Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

if (x == 0)
code1

else
code2

assert(x = 0).code1 ∧
assert(x ≠ 0).code2

32



Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

if (x == 0)
code1

else
code2

assert(x = 0).code1 ∧
assert(x ≠ 0).code2

if (???)
code1

else
code2

32



Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

if (x == 0)
code1

else
code2

assert(x = 0).code1 ∧
assert(x ≠ 0).code2

if (???)
code1

else
code2

code1 ∨
code2

32



Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

if (x == 0)
code1

else
code2

assert(x = 0).code1 ∧
assert(x ≠ 0).code2

if (???)
code1

else
code2

code1 ∨
code2

Certificate: Winning strategy ∧= Instantiation of the template 32



Games

Solving a game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

Game@ s ⊧ Spec?

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(Game@ s) ⊆ L(Spec)?

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(CF-Game@ s) ⊆ L(NFA)?
Problem 1: Game is context-free
(it models the control flow of a program)

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(CF-Game@ s) ⊆ L(NFA)?
Problem 1: Game is context-free
(it models the control flow of a program)

Solution: Various algorithms for games on context-free systems
− Guess-and-check [Walukiewicz 1996]
− Alternating two-way automata [KV 2000]
− Saturation [Cachat 2002]

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(CF-Game@ s) ⊆ L(NFA)?
Problem 2: Specification is given as NFA

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(CF-Game@ s) ⊆ L(NFA)?
Problem 2: Specification is given as NFA

Three entities make decisions:
1) System player chooses (a part of) the behavior of Game
2) Environment player chooses (a part of) the behavior of Game
3) NFA chooses the behavior of the automaton for Spec

the choices are invisible to the other players!

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(CF-Game@ s) ⊆ L(NFA)?
Succinct context-free inclusion game

Left-hand side: Context-free game grammar
Right-hand side: Non-deterministic automaton

33



Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that

L(CF-Game@ s) ⊆ L(NFA)?
Succinct context-free inclusion game

Left-hand side: Context-free game grammar
Right-hand side: Non-deterministic automaton

Existing techniques require an upfront determinization:

Construct DFA with L(DFA) = L(NFA) and consider CF-Game × DFA

Upfront determinization, leading to an exponential blowup
33



Games

Given:
Context-free game grammar (representing the game),
NFA (representing the Spec)

Effective denotational semantics

1. See grammar as a system of equations
2. Solve the system of equations
3. Least solution associates to each non-terminal a formula

34



Games

Given:
Context-free game grammar (representing the game),
NFA (representing the Spec)

Effective denotational semantics
1. See grammar as a system of equations

using three operations
− choices of the system player
− choices of the environment player
− concatenation

2. Solve the system of equations
3. Least solution associates to each non-terminal a formula

34



Games

Given:
Context-free game grammar (representing the game),
NFA (representing the Spec)

Effective denotational semantics
1. See grammar as a system of equations
2. Solve the system of equations
using Boolean formulas over the transition monoid

− represent terminals by their effect on the automaton
− represent choices of the system by conjunction
− represent choices of the environment by disjunction
− represent concatenation by formula composition

3. Least solution associates to each non-terminal a formula

34



Games

Given:
Context-free game grammar (representing the game),
NFA (representing the Spec)

Effective denotational semantics
1. See grammar as a system of equations
2. Solve the system of equations
3. Least solution associates to each non-terminal a formula

− represents the effect of the game on the automaton
− winning regions can be read-off
− winning strategies can be read-off

34



Games

Given:
Context-free game grammar (representing the game),
NFA (representing the Spec)

Effective denotational semantics
1. See grammar as a system of equations
2. Solve the system of equations
3. Least solution associates to each non-terminal a formula

Advantages:
− On-the-fly determinization
− Reduce to a well-understood subproblem
− Prototype implementation performs better than competitors
(Problem is 2EXPTIME-complete!)

34



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = a.Y ∣Synth ε

Y = b.X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false

1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false

2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]

3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])
= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

35



Games

Example:

XSynth → a.Y ∣ ε
YEnv → b.X

q0 q1

a

b

System of equations:

X = [a]; Y ∨ [ε]
Y = [b]; X

Iteration:

Nr. X Y

0 false false
1 [ε] false
2 [ε] [b]; [ε] = [b]
3 [ab] ∨ [ε] [b]
4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]
⇔ [b]

35



Games

Part V. of the thesis

Effective denotational semantics for context-free games

Publication:

L. Holík, R. Meyer, and S. M.
Summaries for context-free games
In: FSTTCS 2016, volume 65 of LIPIcs, pages 41:1–41:16

36



Games

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Solving games

[HMM 2016]

[HMM 2017]

Undecidable

Undecidable

Undecidable

Undecidable

36



Games

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Solving games

[HMM 2016]

[HMM 2017]

Undecidable

Undecidable

Undecidable

Undecidable

36



Games

Part V. of the thesis

Extensions to games with infinite executions (ω-languages)

Publication:

R. Meyer, S. M., and E. Neumann
Liveness verification and synthesis:
New algorithms for recursive programs
Unpublished preprint (available on arXiv)

36



Games

Part V. of the thesis

Extensions to higher-order recursion schemes (HORSes)

Publication:

M. Hague, R. Meyer, and S. M.
Domains for higher-order games
In: MFCS 2017, volume 83 of LIPIcs, pages 59:1–59:15

36



Games

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Solving games

[HMM 2016]

[HMM 2017]

Undecidable

Undecidable

Undecidable

Undecidable

36



Games

Part V. of the thesis

The frontier of the decidability of games

Publication:

R. Meyer, S. M., and G. Zetzsche
Bounded context switching for valence systems
In: CONCUR 2018, volume 118 of LIPIcs, pages 12:1–12:18

+ unpublished work

36



Games

REGNFA DFA

RE
TM Counter M. VSGM MPDS

OCN

OCA VPL

CFL

HORS

PNCov

PNReachWSTS

Solving games

[HMM 2016]

[HMM 2017]

Undecidable

Undecidable

Undecidable

Undecidable

36



Conclusion



Conclusion

In the thesis

Certificates for automata in a hostile environment

we have presented certificate-producing procedures

(1) for computing the closures of Petri net languages
modeling the visible behavior under lossiness/gaininess,

(2) for the regular separability of WSTS languages
with applications in compositional verification,

(3) solving inclusion games
using effective denotational semantics
with applications in program synthesis.

37



Conclusion

The work constituting the thesis has resulted in

− 5 peer-reviewed conference publications,
− 1 unpublished preprints,
− ongoing work on these subjects.

38



Thank you!


	Automata theory
	Certificates
	The (hostile) environment
	1st example: Unreliable communication & Language closures
	2nd example: Compositional verification & Regular separability
	3rd example: Synthesis & Games
	Conclusion
	Appendix

