
Summaries for Context-Free Games

Lukáš Holík1, Roland Meyer2,3, and Sebastian Muskalla2

1 Brno University of Technology, holik@fit.vutbr.cz
2 TU Braunschweig, {meyer,muskalla}@cs.uni-kl.de
3 Aalto University

Abstract
We study two-player games played on the infinite graph of sentential forms induced by a context-
free grammar (that comes with an ownership partitioning of the non-terminals). The winning
condition is inclusion of the derived terminal word in the language of a finite automaton. Our
contribution is a new algorithm to decide the winning player and to compute her strategy. It is
based on a novel representation of all plays starting in a non-terminal. The representation uses the
domain of Boolean formulas over the transition monoid of the target automaton. The elements
of the monoid are essentially procedure summaries, and our approach can be seen as the first
summary-based algorithm for the synthesis of recursive programs. We show that our algorithm
has optimal (doubly exponential) time complexity, that it is compatible with recent antichain
optimizations, and that it admits a lazy evaluation strategy. Our preliminary experiments indeed
show encouraging results, indicating a speed up of three orders of magnitude over a competitor.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases summaries, context-free games, Kleene iteration, transition monoid,
strategy synthesis

1 Introduction

The motivation of our work is to generalize the language-theoretic approach to verification
of recursive programs [27, 31] to synthesis. Central to verification are queries L(G) ⊆ L(A),
where G is a context-free grammar representing the control-flow of a recursive program
and A is a finite automaton representing the specification. When moving to synthesis, we
replace the inclusion query by a strategy synthesis for an inclusion game. This means G
comes with an ownership partitioning of the non-terminals. It induces a game arena defined
by the sentential forms and the left-derivation relation (replace the leftmost non-terminal,
corresponds to executing the recursive program). The winning condition is inclusion in a
regular language given by a finite automaton A. To be precise, player prover tries to meet
the inclusion by deriving terminal words from the language or enforcing infinite derivations.
The goal of refuter is to disprove the inclusion by deriving a word outside L(A).

For the verification of recursive programs, the two major paradigms are summarization
[40, 35] and saturation [12, 21]. Procedure summaries compute the effect of a procedure in
the form of an input-output relation. Saturation techniques compute the pre∗-image over the
configurations of a pushdown system (including the stack). Both were extensively studied,
optimized, and implemented [37, 2, 9, 10]. What speaks for summaries is that they seem to
be used more often, as witnessed by the vast majority of verification tools participating in
the software verification competition [9, 10]. The reason, besides simpler implementability,
may be that the stack maintained by the pre∗-construction increases the search space.

Saturation has been lifted to games and synthesis in [16, 25], from which closest to our
setting is the work of Cachat [16], where the game arena is defined by a pushdown system and

ar
X

iv
:1

60
3.

07
25

6v
4

 [
cs

.L
O

]
 1

 N
ov

 2
01

6

2 Summaries for Context-Free Games

Problem \ Method Saturation Summarization
Verification [12, 21] [40, 35]
Synthesis [16, 32, 25]

the winning condition is given by a regular
set of goal configurations, and the work of
Muscholl, Schwentick, and Segoufin [32],
where a problem similar to ours is solved
by a reduction to [16]. In this paper, we fill in the empty spot in the picture and propose a
solver and synthesis method for context-free inclusion games based on summaries.

Overview of Our Method

Our main contribution is a novel representation of inclusion games that combines well with
efficient methods from algorithmic verification (see below). The basic data structure are the
elements of the transition monoid of the automaton A, called boxes. Boxes are relations over
the states of A that capture the state changes on A induced by terminal words [15]. As such,
they correspond to procedure summaries. The set of all plays starting in a non-terminal
yields a (typically infinite) tree. We show how to represent this tree by a (finite) negation-free
Boolean formula over the transition monoid, where conjunction and disjunction represent
the behavior of the players on the inner nodes.

To compute the representation, we employ a fixed-point iteration on a system of equations
that reflects closely the rules of the grammar (and hence the shape of the tree). Indeed, we
simultaneously compute the formulas for all non-terminals. In the fixed-point computation, a
strategy of prover to enforce an infinite play naturally yields a formula equivalent to false. For
the domain to be finite, we work modulo logical equivalence. The order is implication. Key
to the fixed-point computations is the following compositionality: The formula describing the
plays from a sentential form αβ can be obtained by appropriately composing the formulas
for α and β. Indeed, since we consider left-derivations, each play starting in αβ will have a
prefix that coincides with a maximal play starting in α, followed by a suffix that essentially
is a play from β. Composition is monotonic wrt. implication

Having a finite representation for the set of plays starting in each non-terminal has several
applications. With compositionality, we can construct the formulas for all sentential forms.
This allows us to decide whether a sentential form is in the winning region of a player: We
compute the formula and check whether it is rejecting in the sense that refuter can enforce
the derivation of a word rejected by the automaton. The latter amounts to evaluating the
formula under the assignment that sets to true the rejecting boxes. When a sentential form
is found to belong to the winning region of a player, we show how to compute a winning
strategy, explained here for refuter. We transform the formula to conjunctive normal form
(CNF). On CNFs, we define so-called choice functions that select a box from each clause.
We define a strategy such that all conforming plays end in a terminal word represented by a
chosen box. Instantiating the strategy for a choice function that only picks rejecting boxes
(always possible if the initial formula is rejecting) yields a winning strategy for refuter.

Complexity and Efficiency

We show that our algorithm is in 2EXPTIME, which is tight by [32]. Cachat’s algorithm
is singly exponential and our input instances can be reduced to his with an exponential
blow-up, which together also gives a doubly exponential procedure. The complexity of the
reduction comes from that it must determinize the automaton A [32].

Our domain is compatible with algorithmic techniques that have proven efficient in
a number of applications (see Section 9). We show how to adapt two heuristics to our
fixed-point computation over formulas over boxes, namely antichains from [22, 5, 6] and lazy

L. Holík, R. Meyer, and S. Muskalla 3

evaluation inspired by [20]. We also discuss the compatibility of our technique with recent
algorithms for the analysis of well-structured systems. It is not immediate how to use the
same heuristics for Cachat’s domain of automata. Moreover, the determinization within the
reduction to Cachat’s method does not offer much opportunities for optimization, which
means there is one level of exponential complexity that is hardly amenable to heuristics.

In preliminary experiments, we have compared an implementation of Cachat’s saturation-
based algorithm with our new summary-based algorithm. The benchmarks were generated
according to the Tabakov-Vardi random automata model [42] that we adapted to grammars.
The running times of our algorithm were consistently better by three orders of magnitude
(without the aforementioneed optimizations). This supports our conjecture that keeping the
stack has a negative impact on search procedures, and summaries should be preferable.

Acknowledgements

We thank Olivier Serre, Matthew Hague, Georg Zetzsche, and Emanuele D’Osualdo for
helpful discussions. We thank the reviewers for their feedback. This work was partially
supported by the Czech Science Foundation project 16-24707Y, the IT4IXS: IT4Innovations
Excellence in Science project LQ1602, and the BUT project FIT-S-14-2486.

2 Inclusion Games on Context-Free Grammars

A context-free grammar (CFG) is a tuple G = (N,T, P), where N is a finite set of non-
terminals, T is a finite set of terminals with N ∩ T = ∅, and P ⊆ N × ϑ is a finite set of
production rules. Here, ϑ = (N ∪ T)∗ denotes the set of sentential forms. We write X → η

if (X, η) ∈ P . We assume that every non-terminal is the left-hand side of some rule. The
left-derivation relation⇒L replaces the leftmost non-terminal X in α by the right-hand side of
a rule. Formally, α⇒L β if α = wXγ with w ∈ T ∗, β = wηγ, and there is a rule X → η ∈ P .
We use w to refer to terminal words (so that a following non-terminal is understood to be
leftmost). We consider CFGs that come with an ownership partitioning N = N© ·∪N� of the
set of non-terminals. We say that the non-terminals in NFF are owned by player FF ∈ {©,�}.
The ownership partitioning is lifted to the sentential forms (ϑ = ϑ© ·∪ϑ�) as follows: α ∈ ϑ�
if the leftmost non-terminal in α is owned by �, and ϑ© = ϑ \ ϑ�. In particular, © owns all
terminal words. Combined with the left-derivation relation, this yields a game arena.

I Definition 1. Let G = (N© ·∪N�, T, P) be a CFG with ownership partitioning. The arena
induced by G is the directed graph (ϑ© ·∪ϑ�,⇒L).

A play p = p0p1 . . . is a finite or infinite path in the arena. Being a path means pi ⇒L pi+1 for
all positions. If it is finite, the path ends in a vertex denoted plast ∈ ϑ. A path corresponds
to a sequence of left-derivations, where for each leftmost non-terminal the owning player
selects the rule that should be applied. A play is maximal if it has infinite length or if the
last position is a terminal word.

The winning condition of the game is defined by inclusion or non-inclusion in a regular
language (depending on who is the player) for the terminal words derived in maximal plays.
If the maximal play is infinite, it does not derive a terminal word and satisfies inclusion. The
regular language is given by a (non-deterministic) finite automaton A = (T,Q, q0, QF ,→).
Here, T is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, QF ⊆ Q is
the set of final states, and → ⊆ Q×T ×Q is the transition relation. Instead of (q, a, q′) ∈ →,
we write q a→ q′ and extend the relation to words: q w→ q′ means there is a sequence of states

4 Summaries for Context-Free Games

starting in q and ending in q′ labeled by w. The language L(A) consists of all words w ∈ T ∗
with q0

w→ qf for some qf ∈ QF . We write L(A) = T ∗ \ L(A) for the complement language.
From now on, we use A = (T,Q, q0, QF ,→) for finite automata and G = (N© ·∪N�, T, P)

for grammars with ownership. Note that both use the terminal symbols T .

I Definition 2. The inclusion game and the non-inclusion game wrt. A on the arena induced
by G are defined by the following winning conditions. A maximal play p satisfies the inclusion
winning condition if it is either infinite or we have plast ∈ L(A). A maximal play satisfies
the non-inclusion winning condition if it is finite and plast ∈ L(A).

The two games are complementary: For every maximal play, exactly one of the winning
conditions is satisfied. We will fix player © as the refuter, the player wanting plays to satisfy
non-inclusion, which is a reachability condition. The opponent � is the prover, wanting plays
to satisfy inclusion, which is a safety condition. Since refuter has a single goal to achieve and
has to enforce termination, we will always explain our constructions from refuter’s point of
view. To win, prover just has to ensure that she stays in her winning region. She does not
need to care about termination.

A strategy for player FF ∈ {©,�} is a function that takes a non-maximal play p with
plast ∈ ϑFF (it is FF ’s turn) and returns a successor of this last position. A play conforms to a
strategy if whenever it is the turn of FF , her next move coincides with the position returned
by the strategy. A strategy is winning from a position p0 if every play starting in p0 that is
conform to the strategy eventually satisfies the winning condition of the game. The winning
region for a player is the set of all positions from which the player has a winning strategy.

I Example 3. Consider the grammar Gex = ({X,Y }, {a, b}, {X → aY,X → ε, Y → bX}) .
The automaton Aex is given in Figure 1 and accepts (ab)∗. If refuter owns X and prover owns
Y , then prover has a winning strategy for the inclusion game from position X. Indeed, finite
plays only derive words in (ab)∗. Moreover, if refuter enforces an infinite derivation, prover
wins inclusion as no terminal word is being derived. Refuter can win non-inclusion starting
from Y . After prover has chosen Y → bX, refuter selects X → ε to derive b 6∈ (ab)∗. J

Our contribution is an algorithm to compute (a representation of) both, the winning region
of the non-inclusion game for © and the winning region of the inclusion game for �.

3 From Inclusion Games to Fixed Points

We give a summary-based representation of the set of all plays from each non-terminal and a
fixed-point analysis to compute it. We lift the information to the sentential forms.

3.1 Domain
The idea of the analysis domain is to use Boolean formulas over words. To obtain a finite
set of propositions, we consider words equivalent that induce the same state changes on A,
denoted by ∼A. The winning condition is insensitive to the choice of ∼A-equivalent words.
This means it is sufficient to take formulas over ∼A-equivalence classes.

To finitely represent the ∼A-equivalence classes, we rely on the transition monoid of A,
defined as MA = (P(Q×Q), ; , id). We refer to the elements ρ, τ ∈ MA as boxes. Since
boxes are relations over the states of A, their relational composition is defined as usual,
ρ; τ = {(q, q′′) | ∃q′ ∈ Q : (q, q′) ∈ ρ and (q′, q′′) ∈ τ}. Relational composition is associative.
The identity box id = {(q, q) | q ∈ Q} is the neutral element wrt. relational composition.

L. Holík, R. Meyer, and S. Muskalla 5

q0 q1

a

b id = ρε
ρa ρb ρab ρba ρaa = ρbb

Figure 1 The automaton Aex accepting (ab)∗ and all its boxes with non-empty language. The
first dash on each side of a box represents state q0, the second dash represents q1.

A box ρ represents the language L(ρ) = {w ∈ L(ρ) | ∀q, q′ ∈ Q : q w−→ q′ iff (q, q′) ∈ ρ}.
That is, the words induce the state changes specified by the box. Hence, L(ρ) is an equivalence
class of ∼A, finitely represented by ρ. The function ρ− : T ∗ → MA maps w to the unique
box ρw representing the word, w ∈ L(ρw) . More explicitly, ρε = id, ρa = {(q, q′) | q a→ q′}
for all a ∈ T , and ρuv = ρu; ρv. The image ρT∗ contains exactly the boxes ρ with L(ρ) 6= ∅.
Figure 1 illustrates the representation of words as boxes.

The terminal words generated by maximal plays are represented by boxes, disjunction
gives the alternatives of refuter, and conjunction expresses the options for prover. The
set of plays from a given position is thus represented by a formula F from the set BFA of
negation-free Boolean formulas over the transition monoid (propositions are boxes). This
set includes the unsatisfiable formula false. We use the rules false ∧ F = F ∧ false = false
and false ∨ F = F ∨ false = F to evaluate conjunctions and disjunctions involving false on
the syntactical level. As a consequence, false is the only syntactic representation of the
unsatisfiable formula. This will simplify the definition of relational composition. From now
on and without further mentioning, F and G will refer to formulas from BFA.

Our goal is to decide whether refuter can force the plays from an initial position to end
in a terminal word rejected by A. To mimic this, we define a formula to be rejecting if it is
satisfied under the assignment ν : MA → {true, false} such that ν(ρ) = true if and only if ρ
does not contain a pair (q0, qf) with qf ∈ QF .

To use formulas in a Kleene iteration, we have to define a partial ordering on them.
Intuitively, F should be smaller than G if G makes it easier for refuter to win. Taking the
logical perspective, it is easier for refuter to win if F implies G. Implication on BFA is not
antisymmetric. To factor out the symmetries, we reason modulo logical equivalence, BF/⇔.
Every formula is understood as a representative of the class of logically equivalent formulas
of BFA. Extending ⇒ to BF/⇔ by comparing representatives then yields a partial order.
The least element of the partial order is the equivalence class of false.

3.2 Operations
We combine formulas by conjunction, disjunction, and by an operation of relational composi-
tion that lifts ; from the transition monoid to formulas over boxes. To explain the definition
of relational composition, note that every finite maximal play from αβ proceeds in two
phases. It starts with a maximal play turning α into a terminal word, say w, followed by a
play from wβ. Since there are no more derivations for w, the play from wβ coincides with a
play from β, except that all sentential forms have a prefix w.

Let F and G represent all plays starting in α and β, respectively. In F , terminal words
like w are represented by boxes ρ. We append the plays from β by replacing ρ with ρ;G. To
take into account all plays from α, we do this replacement for all boxes in F . It remains to
add the prefix w to the sentential forms in the plays from β. In ρ;G, every box τ in G is
replaced by ρ; τ . The so-defined formula F ;G will represent all plays from αβ.

6 Summaries for Context-Free Games

I Example 4. Let F = ρa ∨ ρb and G = ρc ∧ ρd. We have (ρa ∨ ρb); (ρc ∧ ρd) = ρa; (ρc ∧
ρd) ∨ ρb; (ρc ∧ ρd) = (ρa; ρc ∧ ρa; ρd) ∨ (ρb; ρc ∧ ρb; ρd) . The first equality replaces ρa and
ρb by ρa;G and ρb;G, respectively. The second equality prefixes ρc and ρd in G by the
corresponding box ρa or ρb. J

I Definition 5. Relational composition over BFA is defined by F ; false = false;G = false
and for composite formulas (? ∈ {∧,∨}, ρ ∈ MA) by

(F1 ? F2);G = F1;G ? F2;G and ρ; (G1 ? G2) = ρ;G1 ? ρ;G2 .

Note that the composition of two non-false formulas is not false. Therefore, the result of a
relational composition is false if and only if at least one of the arguments was false.

Relational composition equips the set of formulas with a monoid structure. In particular,
relational composition is associative. For a fixed-point iteration, the operations also have to
be monotonic wrt. ⇒. For conjunction and disjunction, monotonicity obviously holds.

I Lemma 6. If F ⇒ F ′ and G⇒ G′, then F ;G⇒ F ′;G′.

Proof. The proof proceeds in phases (1) to (4) so that the claim in each phase is proven
under the assumption of the claim proven in the previous phase. Let {?, ?̄} = {∧,∨}. In the
following, we will use ? and ?̄ as syntactic parts of formulas as well as to connect statements
in the proof.

(1) First, we prove the lemma for the case when F, F ′, G′ ∈ MA by induction on the structure
of G. In the base case, all formulas are boxes, hence F = F ′ and G = G′, and the lemma
holds trivially. For the induction step, let G = G1 ? G2. Note that the Boolean formulas
(a ? b)⇒ c and (a⇒ c) ?̄ (b⇒ c) are equivalent, called Equivalence (i) in the following.
By (i), we get (G1 ⇒ G′) ?̄ (G2 ⇒ G′). Hence, by the induction hypothesis applied
twice and by the monotonicity of ?̄, (F ;G1 ⇒ F ′;G′) ?̄ (F ;G2 ⇒ F ′;G′). Again by
Equivalence (i), we get (F ;G1 ? F ;G2)⇒ F ′;G′. This is F ;G⇒ F ′;G′ by the definition
of relational composition since F is a box.

(2) Next, we assume that F ′, G′ ∈ MA and F and G are arbitrary formulas. We prove
the statement by induction on F . In the base case, all formulas except G are boxes,
hence (1) proves the statement. For the induction step, let F = F1 ? F2. By Equivalence
(i), we get (F1 ⇒ F ′) ?̄ (F2 ⇒ F ′). Therefore, by the induction hypothesis and
the monotonicity of ?̄, (F1;G⇒ F ′;G′) ?̄ (G2;M ⇒ G′;M ′). This is by (i) equivalent
to (F1;G ? F2;G)⇒ F ′;G′. This shows F ;M ⇒ F ′;G′ by the definition of relational
composition.

(3) Next, we assume only that F ′ ∈ MA and prove the statement using induction on the
structure of G′. In the base case, all formulas except F and G are boxes, hence the
statement is proven by (2). Let G′ = G′1 ?G

′
2. By the general equivalence of the Boolean

formulas a⇒ (b ? c) and (a⇒ b)? (a⇒ c), called Equivalence (ii) in the following, we get
(G⇒ G′1) ? (G⇒ G′2). Therefore, by the induction hypothesis and the monotonicity of ?,
(F ;G⇒ F ′;G′1) ? (F ;G⇒ F ′;G′2) holds. Again by (ii), we get F ;G⇒ (F ′;G′1 ?F ′;G′2).
This is F ;G⇒ F ′;G′ by the definition of relational composition since F ′ is a box.

(4) Finally, we show the general case by induction to the structure of F ′. In the base case,
F ′ is a box, hence (3) proves the statement. Let F ′ = F ′1 ? F

′
2. By Equivalence (ii),

we get (F ⇒ F ′1) ? (F ⇒ F ′2). Therefore, by the induction hypothesis, and the
monotonicity of ?, (F ;G⇒ F ′1;G′) ? (F ;G⇒ F ′2;G′) holds. Again by Equivalence (ii),
we get F ;G⇒ (F ′1;G′ ? F ′2;G′), which is F ;G ⇒ F ′;G′ by the definition of relational
composition. J

L. Holík, R. Meyer, and S. Muskalla 7

We lift the three operations to⇔-equivalence classes by applying them to arbitrary representa-
tives. Since implication is transitive, monotonicity of the operations ensures well-definedness.
Moreover, the operations still behave monotonically on BF/⇔. From now on, we can thus
identify formulas with the classes they represent.

3.3 System of Equations
We introduce one variable ∆X for each non-terminal X ∈ N . Terminals a ∈ T yield
boxes, and we write ∆a for ρa. We lift the notation ∆− to sentential forms: ∆ε = id and
∆αβ = ∆α; ∆β . This means concatenation in rules is replaced by relational composition.
All rules for the same non-terminal are combined into one equation using disjunction or
conjunction, depending on who is the owner of the non-terminal.

I Definition 7. The system of equations (over BF/⇔) induced by G and A has one equation
for each non-terminal X ∈ NFF with FF ∈ {©,�}. If X → η1, . . . , X → ηk are all rules with
X as their left-hand side, the equation is

∆X = ∆η1 ∧ · · · ∧∆ηk , if X ∈ N� ,

∆X = ∆η1 ∨ · · · ∨∆ηk , if X ∈ N© .

With Lemma 6, for each non-terminal X we can understand the right-hand side of the
associated equation as a monotonic function fX : (BF/⇔)N → BF/⇔. It takes as input a
vector of formulas (one for each non-terminal) and computes a new formula for ∆X . We
combine the functions for each non-terminal to a single function f : (BF/⇔)N → (BF/⇔)N .
It is monotonic on the product domain wrt. the product order ⇒N .

Since BF/⇔ with ⇒ is a finite bottomed partial order, there is a unique least solution σ
for the equation ∆ = f(∆), namely σ =

⊔
i∈N f

i(⊥) [18]. The least element of the product
domain is the vector with the ⇔-equivalence class of false in every component. Note that the
solution is computed by iteratively applying f until a fixed point is reached. This procedure
terminates since the chain

⊥ ⇒N f(⊥)⇒N f(f(⊥))⇒N . . .

stabilizes on a finite domain.
The solution σ : N → BF/⇔ yields a value σX for each non-terminal X ∈ N . We lift the

notation to sentential forms by σε = id, σa = ρa for all a ∈ T , and σαβ = σα;σβ . From now
on, σ will always be the least solution to a system of equations. The system will be clear
from the context (either G, A from the development or Gex , Aex from the running example).

I Example 8. For Gex and Aex from Example 3, the system of equations consists of
∆X = ∆a; ∆Y ∨∆ε = ρa; ∆Y ∨ id and ∆Y = ∆b; ∆X = ρb; ∆X . Its least solution is
σX = id∨ρab and σY = ρb. To terminate the iteration, use ρbab = ρb. J

4 Semantics

Our goal is to determine whether refuter has a winning strategy for the non-inclusion game
played from a given sentential form α. The plays starting in α form a (typically infinite) tree.
The given sentential form is the root and each node has one successor for each sentential
form that can be obtained by a left-derivation step. This means the leaves are precisely
the terminal words derivable in plays from α. Recall that it is refuters goal to disprove the

8 Summaries for Context-Free Games

inclusion in L(A). We call a leaf rejecting if it corresponds to a word outside this language.
An inner node is rejecting if it is either owned by refuter and it has a rejecting successor, or
it is owned by prover and all successors are rejecting. Refuter then has a winning strategy
for non-inclusion when playing from α if and only if the root is rejecting.

We understand the tree as an infinite negation-free Boolean formula. The terminal words
at the leaves are the atomic propositions. Each inner node corresponds to an operation of
conjunction or disjunction, depending on who is the owner of the sentential form. Deciding
whether the root is rejecting then amounts to computing the truth value of this infinite
formula under the assignment that sets to true precisely the words outside L(A).

Our goal is to compare this infinite formula with the finite formula obtained as the least
solution of the fixed-point iteration presented in Section 3.

4.1 Emptiness Games
As a preparation, we note that the fixed-point solution to the inclusion game in particular
solves the so-called emptiness game, where a maximal play is winning if it is infinite. The
emptiness game can be understood as the inclusion game wrt. L(A) = ∅. A winning strategy
of prover for the emptiness game is thus a strategy that only generates infinite plays. We
show that such a strategy exists when playing from α if and only if σα = false.

To prove the equivalence, we will also show that if σα 6= false refuter has a strategy to
enforce finite plays. To define this strategy, we use the following notation. Let σi be the
ith Kleene approximant of the least solution to the system of equations, so σiX is the ith

approximation to the value of the non-terminal X. We define σia = ρa for a ∈ T ∪ {ε} and
all i ∈ N. Just as we did for the fixed-point solution, we inductively define σiα.β = σiα;σiβ .

Note that we deal with negation free-formulas and evaluate conjunctions and disjunctions
involving false on the syntactic level. As a consequence, the result of a conjunction is false if
and only if at least one of the conjuncts was false and the result of a disjunction is false if
and only if both disjuncts were false.

I Theorem 9. Prover has a winning strategy for the emptiness game iff σα = false.

Proof. We have σ0
X = false for every non-terminal X. If i0 is a number such that σi0X 6= false,

then σi0+k
X 6= false for all k ∈ N. This follows from monotonicity of the solution to the system

of equations, σiX ⇒ σi+kX for all i, k ∈ N, and from the fact that F ⇒ false implies F ⇔ false.
Note that for a terminal word, we have σiw 6= false for all i ∈ N. Therefore, σβ 6= false holds
if and only if σX 6= false for all non-terminals X occurring in β by the definition of relational
composition.

Assume σα = false. We define a strategy s∞ for prover such that all plays conform to
it satisfy σβ = false for all positions β occurring in the play. Since we have σw 6= false for
terminal words, this means the plays have to be infinite.

Assume wXβ is given and it is prover’s turn. If there is Y in β so that σY = false, we
can pick any rule X → η and the result will still satisfy σwηβ = false. If there is no such
non-terminal, we know that σX = false has to hold. The fixed-point solution to the system
of equations satisfies σX =

∧
X→η ση. Since the conjunction is false, there is at least one rule

X → η with ση = false. If we pick this rule, the resulting position will satisfy σwηβ = false.
Assume wXβ is given and it is refuters’s turn. If there is a non-terminal Y in β with

σY = false, the position resulting from any rule will still satisfy σwηβ = false. If there is no
such position, we know that σX = false. The fixed-point solution to the system of equations
satisfies σX =

∨
X→η ση. Since the disjunction is false, for any rule X → η we get ση = false.

Therefore, σwηβ = false has to hold, no matter which rule X → η refuter chooses.

L. Holík, R. Meyer, and S. Muskalla 9

For the other direction, we show that whenever σα 6= false refuter has a strategy such
that all plays conform to it are finite (a winning strategy for the non-emptiness game). In
this case, prover cannot have a strategy that only generates infinite plays.

We define the i-step attractor Attri to be the set of non-terminals X such that σiX 6= false.
Note that the i-step attractors form a chain Attr0 ⊆ Attr1 ⊆ The chain has to stabilize
because the set of non-terminals is finite. Given a non-terminal X, we define its attractor
level to be the lowest index i such that X ∈ Attri, and ∞ if no such index exists. We define
the attractor level to be 0 for terminal symbols a ∈ T . The attractor level of a sentential
form β is defined to be

level(β) =
∑

j=1,...,|β|

|G|attractor level of βj .

We give a strategy for refuter such that for each play conform to it, the levels of the occurring
positions form a strictly decreasing chain. Since such a chain has to be finite, this proves the
claim.

Consider wXβ with σwXβ 6= false. In particular, σX 6= false and σY 6= false for all
non-terminals Y in β. This means level(wXβ) 6=∞. Let i be the attractor level of X.

Assume it is prover’s turn. We have σiX =
∧
X→η σ

i−1
η . Since X is in the i-step attractor,

we get σiX 6= false and thus σi−1
η 6= false for all rules X → η. Hence, any symbol occurring

in the right-hand side η of a rule for X has attractor level at most i− 1. Applying such a
rule replaces X, which contributes |G|i to the level of wXβ, by η, a sequence with

level(η) ≤ |η||G|i−1
< |G||G|i−1 = |G|i .

We conclude level(wXβ) > level(wηβ) for any rule X → η.
Assume it is refuter’s turn. We have σiX =

∨
X→η σ

i−1
η . Since σiX 6= false, there is a rule

X → η with σi−1
η 6= false. In particular, all symbols in η have attractor level at most i− 1.

If we pick the rule X → η, we get level(wXβ) > level(wηβ). J

4.2 The Infinite Tree of Plays vs. the Fixed-Point Solution
We discuss how the fixed-point solution to the system of equations relates to the (typically
infinite) formula representing the tree of all plays from a given position. Let Tα be the tree
of plays from α. We argued that we can understand Tα as an infinite negation-free Boolean
formula, where inner nodes are disjunctions or conjunctions (logical connectives) and leaves
are boxes (atomic propositions). We call Tα a formula tree to emphasize the fact that we can
see it as both, a formula and a tree. Note that the outdegree of inner nodes in Tα is bounded
by the maximal number of rules for each non-terminal. We identify the empty formula tree
with false. To generalize the notions of assignment and value from finite formulas to infinite
formula trees, we need a least fixed point that propagates the values from the leaves up the
tree. The following constructions are conservative extensions of the finite case and behave as
expected when applied to finite formulas.

Given a formula tree T , an evaluation e is a map from the nodes to {true, false}. We
understand an evaluation as the set of nodes with value true. This helps us see that the set
of evaluations on a fixed tree T ordered by inclusion forms a complete lattice: The least
element is the empty set, the join is the union, and the meet is the intersection.

Given e, we define the 1-step propagation p(e) to be the evaluation obtained from e by
adding (1) all disjunctions n so that some successor of n is in e and (2) all conjunctions n so
that all successors of n are in e. Note that e ⊆ p(e), so p is monotone over tree evaluations.

10 Summaries for Context-Free Games

An assignment of boxes ν : MA → {true, false} induces an evaluation eν on a formula
tree over MA. The leaves ρ evaluate to ν(ρ), all other nodes evaluate to false. We define the
propagation of ν on T to be the join

⊔
i∈N p

i(eν). The value of T under ν is the value of the
root node in the propagation of ν on T . We define implication as usual: T ⇒ T ′ if under all
ν the value of T ′ is at least the value of T .

I Lemma 10. The value of T under ν is true iff the root of T is in pi0(eν), for some i0 ∈ N.

Proof. If i0 exists, the claim follows from pi0(eν) ⊆
⊔
i∈N p

i(eν). Assume for all i, the root is
not in pi(eν). Since the join is the union, the root node will not be in the propagation. J

Given a formula tree T , a subset of its nodes S induces the prefix T S defined by removing
from T the subtrees with root in S. We think of a removed subtree as being evaluated to
false. We simplify the formula by propagating false upwards from the removed subtrees.
Formally, T S is created by (1) marking all subtrees with root in S, (2) repeating until fixed
point: marking all disjunctions that have all successors marked and marking all conjunctions
that have some successor marked, including their subtrees, (3) deleting all marked nodes.
T S is again a formula tree, each disjunction and conjunction has at least one successor.

Since we deal with negation-free formulas, the removed subtrees will never lead to the
value of a tree being true that would have been false prior to the removal. Hence, a larger
prefix will be easier to satisfy than a smaller one (created by removing more nodes).

I Lemma 11. Let T be a formula tree and let S ⊆ R be subsets of its nodes. Then T R ⇒ T S.

Proof. The nodes of T R form a subset of the nodes of T S . Hence, for all assignments ν
we have eν(T R) ⊆ eν(T S) and pi

(
eν(T R)

)
⊆ pi

(
eν(T S)

)
for all i. In the limit, this yields⊔

i∈N p
i
(
eϕ(T R)

)
⊆
⊔
i∈N p

i
(
eϕ(T S)

)
. In particular, the value of the root node of T S is at

least the value of the root node of T R. J

Let Si be the set of nodes in T of depth strictly greater than i. We write T i for T Si and
call this tree the cut at level i. The previous lemma implies T iα ⇒ T i+kα for all i, k ∈ N. The
value of the whole tree T is true if and only if there is a finite cut such that the value of the
prefix is already true.

I Lemma 12. The value of T under ν is true iff the value of T i0 is true, for some i0 ∈ N.

Proof. By Lemma 10, it is sufficient to show that for all i0 ∈ N, the root of T is in pi0(eν) if
and only if the value of T i0 is true.

Assume the root of T is in pi0(eν). Since each step of propagation can only propagate
the value of a node to its immediate predecessors, there is a set of leaves of height at most
i0 assigned to true by ν that are sufficient to cause the root to be in pi0(eν). Consider the
evaluation e′ that coincides with eν on nodes up to height at most i0 and evaluates all other
nodes to false. We obtain e′ ⊆ eν , and by the monotonicity of propagation pi0(e′) ⊆ pi0(eν).
Since true got propagated to the root by leaves of depth i0 and those leaves are still evaluated
to true by e′, the root is contained in pi0(e′). To finish the proof, note that the semantics of
removing nodes of depth greater than i0 is defined by propagating false from nodes of depth
greater than i0. This coincides with the behavior of pi0(e′).

Assume the value of T i0 is true, which means the root of T i0 is in
⊔
i∈N p

i(eν(T i0)). Since
T i0 has height at most i0, we know

⊔
i∈N p

i(eν(T i0)) = pi0(eν(T i0)). By eν(T i0) ⊆ eν(T)
we get pi0

(
eν(T i0)

)
⊆ pi0(eν(T)), as desired. J

L. Holík, R. Meyer, and S. Muskalla 11

The next lemma shows that the composition of two trees for sentential forms, each cut at
some level, is a prefix of the tree for the concatenation of the sentential forms, cut at the
sum of levels. The composition appends the second tree to every leaf of the first, as before.

I Lemma 13. Let α, β be sentential forms, i, j ∈ N. The tree T iα; T jβ is a prefix of T i+jαβ .

Proof. By the definition of relational composition, a branch of T iα; T jβ can be decomposed
into a branch of T iα of length at most i and a branch of T jβ of length at most j. The total
length of the branch is at most i+ j, which means it will also occur in T i+jαβ , unless other
nodes that were removed in T i+jαβ trigger some node on the branch to be marked. Towards a
contradiction, take the deepest node on the branch that gets marked triggered by a set of
nodes of depth greater than i + j being marked. Since it got marked although it has one
successor that will not be marked, namely the one on the branch, it has to be a conjunction.
Each triggering node is either in the part of the tree corresponding to the derivation process
of α or in the part of the tree corresponding to the derivation process of β, i.e. there is
a corresponding node in Tα or Tβ . In the first case, the corresponding node has depth
i+ j + 1 > i, so it will be removed in T iα. In the second case, it either occurs on a branch of
Tβ that was appended to a branch of Tα of length greater than i, which will be removed in
T iα, or it occurs on a branch of length greater than j in Tβ , which will be removed in T jβ . In
any case, all triggering nodes will also be removed to obtain T iα; T jβ , which would lead to the
removal of the node on the branch in T iα; T jβ . This is a contradiction to the fact that the
branch appears there.

To obtain T iα; T jβ from T i+jαβ by removing nodes, note that any branch of T i+jαβ decomposes
into a branch of T i+jα and a branch of T i+jβ so that their total length is at most i+ j. If the
length of the α-part is longer than i, remove the first node of depth strictly greater than i
(this will also remove the β-part potentially appended to it). If the length of the β-part is
longer than j, remove the first node of relative depth strictly greater than j. J

Combined with Lemma 11, we obtain T iα; T jβ ⇒ T
i+j
αβ .

We can now prove the fundamental correspondence between the ith Kleene approximant
and the formula tree cut at level i. We do not get a precise result like σiα ⇔ T

f(i)
α . This

is due to the fact that exploring the tree for one more level and doing one step of Kleene
iteration behave differently. Exploring the tree for one more level will consider one more
derivation step in each branch. This derivation step will be applied only to the leftmost
non-terminal of the sentential form forming the last node in a branch of length i. Doing one
step of Kleene iteration will replace σiX by σi+1

X for every non-terminal, which means applying
one derivation to each non-terminal that occurs at level i. A sentential form obtained from
α and represented by the ith Kleene approximation has at most |α||G|i symbols. Indeed,
in each step, we replace a non-terminal by at most the number of symbols in the largest
right-hand side of any rule in G. We can think the Kleene iteration as exploring the trees for
all non-terminals simultaneously and composing them to get the formula for α, instead of
just exploring the tree for α directly.

I Lemma 14. T iα ⇒ σiα ⇒ T
|α||G|i
α .

Proof. We prove the statement using induction on i.
Let i = 0. We consider two cases. If α is a terminal word, α = w ∈ T ∗, then the tree of

plays actually only consists of the root node labeled by ρw. Therefore, we have

T |w||G|
0

w = T |w|w = T 0
w = Tw = ρw ⇔ σ0

w .

12 Summaries for Context-Free Games

If α contains a non-terminal, then Tα has height at least 1. This means the root node is
a conjunction or disjunction, which will be deleted since all its successors of depth larger
than 0 will be marked. The empty tree remains, which we identify with false. Furthermore,
σ0
α = false, since we initialize the solution with false for every non-terminal. As the implication
T iα ⇒ T

|α||G|i
α always holds, we obtain σα ⇔ T 0

α ⇒ T
|α||G|0
α .

Let i > 0. We prove the statement by an inner induction on the structure of α. Assume
α = X is a single non-terminal. (If α = ε or α = a ∈ T , the proof for i = 0 carries over.)
Assume X is owned by prover. By the induction hypothesis,

T i−1
η ⇒ σi−1

η ⇒ T |η||G|
i−1

η

for any rule X → η. By the monotonicity of conjunction,∧
X→η

T i−1
η ⇒

∧
X→η

σi−1
η ⇒

∧
X→η

T |η||G|
i−1

η .

We have σiX =
∧
X→η σ

i−1
η , and since formula trees are created by applying grammar rules,

we know that
∧
X→η T i−1

η = T iX . Furthermore,∧
X→η

T |η||G|
i−1

η = T |η||G|
i−1+1

X ⇒ T |G|
i

X .

The implication is due to |η| ≤ |G| − 1 and Lemma 11. Altogether, T iX ⇒ σiX ⇒ T
|G|i
X . If X

is owned by refuter, the proof is similar (disjunction is also monotonic).
Let α = x.γ. We may assume by the inner induction that T iγ ⇒ σiγ ⇒ T

|γ||G|i
γ holds. As

in the base case, we know T ix ⇒ σix ⇒ T
|G|i
x . By an argumentation analogous to the one

used in the proof Lemma 13, T ixγ is a prefix of T ix ; T iγ , so

T ixγ ⇒ T ix ; T iγ ⇒ σix;σiγ = σixγ .

The first implication is Lemma 11, the second is by monotonicity of composition. The
equality holds by definition.

Similarly, σix;σiγ ⇒ T
|G|i
x ; T |γ||G|

i

γ holds by monotonicity, and T |G|
i

x ; T |γ||G|
i

γ is a prefix of
T (|γ|+1)|G|i
xγ by Lemma 13, so we conclude σixγ ⇒ T

(|γ|+1)|G|i
xγ = T |xγ||G|

i

xγ . J

We now lift the correspondence between the ith Kleene approximant and the tree cut at
level i to a correspondence between the (usually infinite) formula tree and the fixed-point
solution. The result is an exact characterization of the fixed-point solution.

I Theorem 15. Tα ⇔ σα.

Proof. Assume the value of Tα under ν is true. By Lemma 12, there is a finite index i0 so
that the value of T i0α is true. By Lemma 14 and the fact that the fixed-point solution is
implied by any approximant, T i0α ⇒ σi0α ⇒ σα, so σα also evaluates to true under ν.

Assume σα evaluates to true under ν. Note that σα = σi0α for some index i0 ∈ N. Again
by Lemma 14, we have σi0α ⇒ T

|α||G|i0
α , so the value of T |α||G|

i0
α is true. Since T |α||G|

i0
α is a

prefix of Tα, the value of Tα is true by Lemma 11. J

The theorem yields another method for computing the fixed-point solution by exploring
the tree of plays up to a finite level. We could use the fact that σ = σi0 , where an upper
bound for i0 can be computed using |G| and the number of equivalence classes of formulas

L. Holík, R. Meyer, and S. Muskalla 13

over MA. By Lemma 14, we obtain σα = σi0α ⇔ T
|α||G|i0
α , so we may also explore Tα up to

level |α||G|i0 .
Note that this will not only require exponentially more iterations to obtain the fixed

point in the worst case, it is also impractical because T iα ⇔ T i+1
α does not necessarily imply

T iα ⇔ Tα. Unlike in the Kleene iteration, we cannot conclude to have reached the fixed
point as soon as one unfolding does not change the solution. Consider the grammar given
by S → X,S → a,X → Y,X → a, Y → b where refuter owns all non-terminals. Let the
automaton be so that ρa 6= ρb. Then we have T 1

S ⇔ T 2
S ⇔ ρa, but T 2

S 6⇔ T 3
S ⇔ TS ⇔ ρa∨ρb.

5 Winning Regions and Strategy Synthesis

Define the set of sentential forms

W⊆L(A) = {α ∈ ϑ | σα is not rejecting }

and denote its complement by

W 6⊆L(A) = ϑ \W⊆L(A) = {α ∈ ϑ | σα is rejecting } .

Our goal is to prove the following result in a constructive way, by synthesizing strategies
guided by the fixed-point solution to the system of equations.

I Theorem 16. Inclusion games are determined:

ϑ = W⊆L(A) ∪· W 6⊆L(A) ,

where W⊆L(A) is the winning region of prover and W 6⊆L(A) is the winning region of refuter.

As a consequence, it is decidable whether a given sentential form α is winning for a player:
Compute the formula σα and evaluate it under ν to check whether it is rejecting.

It has been shown in [39] that for all games on pushdown systems with ω-regular winning
conditions, the winning regions are regular. Indeed, the winning region of the non-inclusion
game can be accepted by a deterministic automaton. The set of equivalence classes of
formulas forms its set of control states, the equivalence class of id is the initial state and
rejecting formulas are final states. If the automaton in state F reads symbol x ∈ N ∪ T , it
switches to the state F ;σx.

Representing sentential forms by formulas is too imprecise to do strategy synthesis.
(In fact, the leftmost non-terminal is not even encoded in the formula.) Since relational
composition is associative, we can represent the set of all sentential forms α = wXβ by a set
of triples (σw, X, σβ), where σw and σβ are taken from a finite set of formulas (up to logical
equivalence) and X is a non-terminal from a finite set. This finite representation will be
sufficient for the strategy synthesis. Our synthesis operates on normalized formulas in CNF.

5.1 Conjunctive Normal Form
A formula in CNF is a conjunction of clauses, each clause being a disjunction of boxes. We
use set notation and write clauses as sets of boxes and formulas as sets of clauses. The set of
CNF-formulas over MA is thus CNFA = P(P(MA)). Identify true = {} and false = {{}}. In
this section, all formulas will stem from CNFA.

Since our CNF-formulas are negation-free, implication has a simple characterization.

I Lemma 17. F ⇒ G if and only if there is j : G→ F so that j(H) ⊆ H for all H ∈ G.

14 Summaries for Context-Free Games

Proof. The implication from right to left is immediate. Assume F ⇒ G but there is no
map j as required. Then there is some clause H ∈ G so that for every clause K ∈ F we
find a variable xK ∈ K with xK /∈ H. Consider the assignment ν(xK) = true for all xK and
ν(y) = false for the remaining variables. Then ν(F) = true. At the same time, ν(G) = false
as ν(H) = false. This contradicts the assumption F ⇒ G, which means ν(F) = true implies
ν(M) = true for every assignment ν. J

When computing a disjunction, we have to apply distributivity to obtain a CNF.

I Lemma 18. F ∨G⇔ {K ∪H | K ∈ F,H ∈ G} and F ∧G⇔ F ∪G.

When computing the relational composition F ;G of CNF-formulas, we obtain a formula with
three alternations between conjunction and disjunction. We apply distributivity to normalize
F ;G. Lemma 20 gives a closed-form representation of the result. To understand the idea,
consider the composition of one clause with a CNF.

I Example 19. Consider F ;G = (ρa ∨ ρb); (ρc ∧ ρd) = (ρa; ρc ∧ ρa; ρd) ∨ (ρb; ρc ∧ ρb; ρd).
Distributivity yields (ρa; ρc ∨ ρb; ρc) ∧ (ρa; ρc ∨ ρb; ρd) ∧ (ρa; ρd ∨ ρb; ρc) ∧ (ρa; ρd ∨ ρb; ρd). J

To turn F ;G to CNF, we normalize the compositionK;G for every clauseK ∈ F . The formula
K;G is an alternation of disjunction (not in the example), conjunction, and disjunction.
Distributivity, when applied to the topmost two operations, selects for every box ρ ∈ K a
clause H ∈ G to compose ρ with. This justifies the following set-theoretic characterization.

I Lemma 20. F ;G⇔
⋃
K∈F

⋃
z:K→G

{⋃
ρ∈K ρ; z(ρ)

}
.

For negation-free formulas, the presence of the empty clause characterizes false.

I Lemma 21. F ⇔ false if and only if {} is a clause of F .

Proof. Note that false ⇒ F holds for any formula. In the following, we use the characteri-
zation of implication given in Lemma 17. Assume that F contains the empty clause. We
define j : false → F by mapping the clause {} of false = {{}} to the empty clause in F .
Assume that F ⇔ false. In particular, the empty clause in false embeds a clause of F . The
embedded clause has to be the empty clause. J

5.2 Strategy for Prover
Prover wins on infinite plays, and therefore does not have to care about termination. This
yields a simple positional winning strategy.

I Theorem 22. The strategy s⊆L(A) that applies a rule such that the formula for the resulting
position is not rejecting (if possible) is a winning strategy for prover for the inclusion game
from all positions in W⊆L(A).

Strategy s⊆L(A) is uniform and positional. Uniform means it is winning from all position in
W⊆L(A). The strategy is positional in that it only needs to consider the current position in
order to make a choice. Moreover, we can precompute ση for all η occurring as the right-hand
side of a rule. Together with the representation of sentential forms as triples (σw, X, σβ), this
will be sufficient to decide on prover’s next move. Hence, the strategy is not only positional
(but depending on an infinite set of positions), it can even be finitely represented. One can
also understand it as the winning strategy for a finite game where the triples ({{ρw}}, X, σβ)
form the nodes and the production rules induce the edges.

L. Holík, R. Meyer, and S. Muskalla 15

For the proof, we show that whenever we are in a non-rejecting position and it is prover’s
turn, there is a move to a non-rejecting position. Hence, if we start from W⊆L(A), the
condition on the existence of a move (stated in the theorem as if possible) does not apply.
Refuter can only move to positions with non-rejecting formulas.

I Lemma 23. Let α = wXβ ∈ ϑ with σα not rejecting.
(1) If X ∈ N�, there is X → η so that σwηβ is not rejecting.
(2) If X ∈ N©, then σwηβ is not rejecting for all X → η.

Proof. To prove Lemma 23, note that σwXβ = σw;σX ;σβ . Since w is a terminal word,
we have σw = {{ρw}}. Hence, a clause of σw;σX will be of type ρw;K, where K is a
clause of σX .

(1) If σα is not rejecting, it contains a clause K ′ without a rejecting box. By Lemma 20, K ′
is defined by a clause K of σwX and a mapping z from the boxes of K to the clauses of
σβ . Since X is owned by prover, we have σX =

∧
X→η ση. The conjunction is a union

of the sets of clauses, Lemma 18. Hence, clause K also occurs in σwη for some η. By
choosing the same mapping z, we get that K ′ is also a clause in σwηβ .

(2) We prove (2). If σα is not rejecting, it contains a clause K ′ without a rejecting box.
By Lemma 20, K ′ is determined by a clause ρw;K of σwX and a map z : ρw;K → σβ
mapping boxes to clauses. Since X is owned by refuter, we have σX =

∨
X→η ση. By

the characterization of disjunction (Lemma 18), there is a representation of ρw;K as⋃
X→η ρw;Kη with Kη ∈ ση for all X → η.

Consider a rule X → η. Let K ′′ be the clause of σwηβ determined by the clause ρw;Kη

and the map z (nproperly restricted). This clause is not rejecting. If K ′′ contained a
rejecting box, K ′ would also contain this box since ρw;Kη ⊆ ρw;K. A contradiction.

J

Proof of Theorem 22. For w ∈ T ∗, we have σw = {{ρw}}. In particular, w ∈ L(A) if and
only if σw is not rejecting. This shows that L(A) ⊆W⊆L(A) and L(A) ∩W⊆L(A) = ∅.

We show that all positions occurring in a play conform to s⊆L(A) and starting in a position
from W⊆L(A) remain in W⊆L(A). This proves the claim since we either obtain an infinite
play or we end up in a position in L(A). In both cases, the inclusion winning condition is
satisfied. Technically, whenever prover owns the leftmost non-terminal, the strategy will
choose a rule such that the new position still has a non-rejecting formula. By Lemma 23(1)
below, this is possible. Whenever refuter owns the leftmost non-terminal, she can only choose
a rule such that new position still has a non-rejecting formula by Lemma 23(2). J

5.3 Non-Inclusion (for Refuter)
A CNF-formula is rejecting iff for each clause chosen by prover, refuter can select a rejecting
box in this clause. We formalize the selection process using the notion of choice functions. A
choice function on F ∈ CNFA is a function c : F → MA selecting a box from each clause,
c(K) ∈ K for all K ∈ F . We show that there is a strategy for refuter to derive a terminal
word from one of the chosen boxes. In particular, the strategy will only generate finite plays.
Note that a choice function can only exist if F does not contain the empty clause. Otherwise,
the formula is equivalent to false (Lemma 21), and refuter cannot enforce termination of the
derivation process.

We show that by appropriately selecting the moves of refuter, we can refine the choice
function along each play, independent on the choices of prover. Given a choice function c on

16 Summaries for Context-Free Games

a CNF-formula F , a choice function c′ on G refines c if {c′(H) | H ∈ G} ⊆ {c(K) | K ∈ F},
denoted by c′(G) ⊆ c(F). Given equivalent CNF-formulas, a choice function on the one can
be refined to a choice function on the other formula. Hence, we can deal with representative
formulas in the following proofs.

I Lemma 24. Consider F ⇒ G. For any choice function c on F , there is a choice function
c′ on G that refines it.

Proof. By Lemma 17, any clause H of G embeds a clause j(H) of F . We can define c′(H)
as c(j(H)) to get a choice function with c′(G) ⊆ c(F). J

To construct the strategy, we consider formulas obtained from Kleene approximants. Define a
sequence of levels lvl associated to a sentential form α to be a sequence of natural numbers of
the same length as α. The formula σlvl

α corresponding to α and lvl is defined by σia = {{ρa}}
for all a ∈ T ∪{ε}, σiX the solution to X from the ith Kleene iteration, and σlvl.lvl′

α.β = σlvl
α ;σlvl′

β .
A choice function for α and lvl is a choice function on σlvl

α . Note that σia is independent of
i for terminals a. Moreover, there is an i0 so that σi0X = σX for all non-terminals X. This
means a choice function on σα can be understood as a choice function on σi0α . Here, we use a
single number i0 to represent a sequence lvl = i0 . . . i0 of the appropriate length.

By definition, σ0
X is false for all non-terminals, and false propagates through relational

composition by definition. We combine this observation with the fact that choice functions
do not exist on formulas that are equivalent to false.

I Lemma 25. If there is a choice function for α and lvl, then lvl does not assign zero to
any non-terminal X in α.

The lemma has an important consequence. Consider a sentential form α with an associated
sequence lvl ∈ 0∗ and a choice function c for α and lvl. Then α has to be a terminal word,
α = w ∈ T ∗, σlvl

α = {{ρw}}, and the choice function has to select ρw. In particular, w itself
forms a maximal play from this position on, and indeed the play ends in a word whose box
is contained in the image of the choice function.

Consider now α = wXβ and lvl an associated sequence of levels. Assume lvl assigns a
positive value to all non-terminals. Let j be the position of X in α and let i = lvlj be the
corresponding entry of lvl. We split lvl = lvl ′.i.lvl ′′ into the prefix for w, the entry i for X,
and the suffix for β. For each rule X → η, we define lvlη = lvl ′.(i− 1) . . . (i− 1).lvl ′′ to be
the sequence associated to wηβ. It coincides with lvl on w and β and has entry i− 1 for all
symbols in η. Note that for a terminal word, the formula is independent of the associated
level, so we have σlvl′.i

wX = σiwX and σlvl′.(i−1)...(i−1)
wη = σi−1

wη .
We show that we can (1) always refine a choice function c on σlvl

α along the moves of
prover and (2) whenever it is refuter’s turn, pick a specific move to refine c.

I Lemma 26. Let c be a choice function for α = wXβ and lvl.
(1) If X ∈ N�, for all X → η there is a choice function cη for wηβ and lvlη that refines c.
(2) If X ∈ N©, there is X → η and a choice function cη for wηβ and lvlη that refines c.

Proof.
(1) Let F = σlvl

α and Fη = σ
lvlη
wηβ . By Lemma 20, the clauses of F are given by a clause ρw;K

of σlvl′.i
wX = σiwX and a function mapping the boxes in this clause to σlvl′′

β . Similarly, the
clauses of Fη are given by a clause of σi−1

wη and a mapping from the boxes to σlvl′′
β . We

have σiX =
∧
X→η σ

i−1
η . Since the conjunction corresponds to a union of the clause sets,

Lemma 18, every clause of σi−1
wη is already a clause of σiwX . Hence, the clauses of Fη

L. Holík, R. Meyer, and S. Muskalla 17

form a subset of the clauses of F . Since c selects a box from every clause of F , we can
define the refinement cη on Fη by restricting c.

(2) We show that there is a rule X → η and a choice function cη on σlvlη
wηβ refining c. Towards

a contradiction, assume this is not the case. Then for each rule X → η, there is at least
one clause K ′′η of σlvlη

wηβ that does not contain a box in the image of c. By Lemma 20,
this clause is defined by a clause ρw;K ′η of σi−1

wη and a function zη mapping the boxes
from this clause to σlvl′′

β .
We have σiX =

∨
X→η σ

i−1
η . A clause of σiwX is thus (Lemma 18) of the form

K = ρw; (
⋃
X→η

Kη) =
⋃
X→η

ρw;Kη ,

where each Kη is a clause of σi−1
η . We construct the clause K ′ = ρw; (

⋃
X→ηK

′
η) of σiwX

using the K ′η from above. On this clause, we define the map z′ =
⋃
X→η zη that takes

a box ρw; ρ ∈ ρw;K ′η and returns zη(ρw; ρ). (If a box ρw; ρ is contained in ρw;K ′η for
several η, pick an arbitrary η among these.) By Lemma 20, K ′ and z′ define a clause of
σlvl
α . The choice function c selects a box ρw; ρ; τ out of this clause, where there is a rule
X → η such that ρ ∈ K ′η and τ ∈ z′(ρw; ρ) = zη(ρw; ρ). This box is also contained in
K ′′η . A contradiction to the assumption that no box from K ′′η is in the image of c. J

Notice that the sequence lvlη is smaller than lvl in the following ordering ≺ on N∗. Given
v, w ∈ N∗, we define v ≺ w if there are decompositions v = xyz and w = xiz so that i > 0 is
a positive number and y ∈ N∗ is a sequence of numbers that are all strictly smaller than i.
Note that requiring i to be positive will prevent the sequence xz from being smaller than
x0z, since we are not allowed to replace zeros by ε.

The next lemma states that ≺ is well founded. Consequently, the number of derivations
wXβ ⇒ wηβ following the strategy that refines an initial choice function will be finite.

I Lemma 27. ≺ on N∗ is well founded with minimal elements 0∗.

Proof. Note that any element of N∗ containing a non-zero entry is certainly not minimal,
since we can obtain a smaller element by replacing any non-zero entry by ε. Any element of
the form 0∗ is minimal, since there is no i as required by the definition of ≺.

Assume v0 � v1 � . . . is an infinite descending chain. Let b be the maximal entry of v0,
i.e. b = maxj=1,...,|v0| v0, and note that no vl with l ∈ N can contain an entry larger than b
by the definition of ≺. Therefore, we may map each vl to its Parikh image ψ(vl) ∈ Nb+1, the
vector such that ψ(vl)j (for j ∈ {0, . . . , b}) is the number of entries equal to j in vl.

Now note that we have ψ(vi) > ψ(vi+1) with respect to the lexicographic ordering on
Nb+1. Hence, the chain ψ(v0) > ψ(v1) > . . . is an infinite descending chain, which cannot
exist since the lexicographic ordering is known to be well-founded. J

Lemma 27 is used in the main technical result of this section. Proposition 28 in particular
says that all maximal plays that conform to sα,c are finite. If σα is rejecting, there is a choice
function on σα that only selects rejecting boxes. The desired theorem is then immediate.

I Proposition 28. Let c be a choice function on σα. There is a strategy sα,c such that all
maximal plays starting in α that conform to sα,c end in a terminal word w with ρw ∈ c(σα).

Proof. We show the following stronger claim: Given any triple consisting of a sentential
form α, an associated sequence of levels lvl, and a choice function c for α and lvl, there is a
strategy sα,c such that all maximal plays conform to it and starting in α end in a terminal

18 Summaries for Context-Free Games

word w with ρw ∈ {c(K) | K ∈ σα} . This proves the proposition by choosing α and c as
given and lvl = i0...i0, where i0 ∈ N is a number such that σ = σi0 .

To show the claim, note that ≺ on N∗ is well founded and the minimal elements are exactly
0∗ by Lemma 27, and lvlη ≺ lvl. This means we can combine Lemma 25 and Lemma 26 (for
the step case) into a Noetherian induction. The latter lemma does not state that lvlη assigns
a positive value to each non-terminal, which was a requirement on lvl. This follows from
Lemma 25 and the fact that cη is a choice function. The strategy sα,c for refuter always
selects the rule that affords a refinement of the initial choice function c. J

I Theorem 29. Let α ∈W 6⊆L(A) and let c select a rejecting box in each clause of σα. Then
sα,c is a winning strategy for refuter for the non-inclusion game played from α.

Implementing Winning Strategies

The strategy sα,c from Proposition 28 is not positional. However, it can be implemented as
a strategy with finite memory. We initialize it with a choice function on σα and keep track
of the current refinement of this function in each play. Observe that it suffices to store the
image of the current choice function, which is a set of boxes, and the number of boxes is
finite. To further optimize the implementation, instead of storing all Kleene approximants we
annotate every box in the fixed point by the iteration step in which it entered the solution.
Rather than selecting an arbitrary rejecting box from each clause to initialize the choice
function, one should then choose the rejecting box which entered the solution the earliest.

The strategy can be implemented without levels but at the expense of an enumeration.
Whenever prover makes a move, the strategy computes the refinement of the choice function.
Given a position wXβ owned by refuter, it checks in increasing order, for all j = 0, 1, . . .
whether there is a rule X → η such that there is a refinement of the current choice function
on ρw;σjη;σβ . Lemma 26(2) guarantees the existence of such a rule. Moreover, in terms of
levels, j will be smaller than the current level of X, say i. This shows termination of the
overall procedure. Another advantage of this enumeration of Kleene approximants is that we
may find a refinement of the choice function with an iteration number j < i− 1.

One can also use a pushdown automaton to implement the strategy. Its stack will always
have one entry for each non-terminal of the sentential form currently under consideration,
storing the symbol, the level, and the formula for the corresponding suffix of the sentential
form. The automaton iterates over the grammar rules and uses the stored level for the
current non-terminal and the formula for the suffix to determine which rule to pick. The
implementation using bounded space requires linear time (in the size of the current sentential
form) to select rules. In contrast to this, the pushdown strategy needs to be initialized once
for the initial position and then can determine rules in constant time.

As soon as we know that a winning strategy for refuter exists (i.e. by evaluating the
formula for the initial position), we can find one by a breadth-first search in the tree formed
by all plays. The winning strategy will only generate finite plays and the tree has finite
out-degree. So, by König’s lemma, the tree formed by all plays conform to this strategy has
to be finite. This allows us to obtain a positional strategy.

I Example 30. In the running example, formula σY = {{ρb}} is rejecting. In fact, refuter
can win the non-inclusion game played from Y . The initial choice function on σY has to be
c({ρb}) = ρb. In the first step, prover has no alternative but Y → bX. Position bX has the
formula σbX = {{ρb}}; {{id, ρab}} = {{ρb, ρbab}} = {{ρb}}. Pick the same choice function
as before. The rule X → ε causes id to enter σX in the first Kleene step. This causes ρb to
enter σbX also in the first step. Indeed, by choosing X → ε refuter wins non-inclusion. J

L. Holík, R. Meyer, and S. Muskalla 19

6 Complexity

We show that deciding whether refuter has a winning strategy for non-inclusion from a
given position is a 2EXPTIME-complete problem. Moreover, the algorithm presented in the
previous sections achieves this optimal time complexity.

6.1 Hardness
We prove that deciding the non-inclusion game is 2EXPTIME-hard. Our proof of the lower
bound follows the proof of the analogue result for the games considered in [32].

I Theorem 31. Given a non-inclusion game and an initial position, deciding whether refuter
has a winning strategy from the specified position is 2EXPTIME-hard.

Proof of Theorem 31. Assume an alternating Turing machine M with exponential space
bound - say 2nc - and an input w is given. We construct a polynomial-sized game such that
refuter has a winning strategy if and only if M accepts w.

A similar reduction has been given in [32]. There, the authors consider left-to-right
games which work as follows: The first player picks a position in the current sentential form
and the second player replaces the non-terminal at this position using a rule of his choice.
Furthermore, whenever the player picking the positions skips a non-terminal, she is not
allowed to choose it later. We cannot simply reduce the games considered in [32] to our
setting, since in left-to-right games, the player who needs to have the finite winning strategy
has to reach the regular target language instead of avoiding it.

Our approach is to use the grammar to generate a sequence of configurations of the Turing
machine. Afterwards, the non-deterministic automaton detects whether the sequence forms a
invalid or non-accepting computation. (This is similar to the proof that universality of NFAs
is PSPACE-hard [8].) The game aspect allows to us generate a computation of an alternating
Turing machine. We let refuter choose the transitions originating in existential states and
we let prover choose the transitions originating in universal states. Since each configuration
has exponential size, the polynomial-sized automaton is not able to check whether the
head pointer of the Turing machine has been moved in an incorrect way (and therefore,
the sequence of configurations is invalid). To solve this problem, we divide the derivation
process into two parts: In the first part, refuter generates a sequence of configurations from
right-to-left, only giving control over to prover to pick the transitions originating in universal
control states. In the second part, prover does a right-to-left pass in which she wants to show
that the configuration is invalid (or non-accepting). To this end, she places a marker on the
encoding of a cell. Refuter tries to justify the computation and rebut the objection. To this
end, she places a marker on the encoding of the cell with the same position in the previous
configuration. With the help of the markers, the automaton is able to detect violations. The
automaton will accept the resulting word if and only if the markers prove that it is an invalid
computation.

We will use the symbols 0, 1, [,], (,), 〈, 〉, and , . Furthermore, each control state q ∈ QM ,
each tape symbol a ∈ ΓM , and each transition δ ∈ ∆M of the Turing machine is used as
a symbol. Each of these symbols x will occur in four different versions in the grammar.
Without any decoration, it is a non non-terminal x owned by prover. It may also be a
non-terminal x̄ owned by refuter or a terminal xp or xr, where the subscripts indicate which
player caused the symbol to be derived. Furthermore, there is an initial non-terminal S
owned by refuter, several versions of the non-terminal #, and the special terminal symbols
START ,STOP,ONUM ,OTAPE , J .

20 Summaries for Context-Free Games

At first, the derivation process will generate a sequence of configuration in a right-to-left
fashion. This means that production rules of the shape # → #x are applied. Note that
since we only consider left-derivations, the symbols x that are inserted will not be touched
as long as # has not yet been replaced. Each configuration is encoded as a sequence

(a0,bin(0)) (a1,bin(1)) . . . (ai−1,bin(i− 1)) [q, (ai,bin(i))] . . . (a2nc ,bin(2n
c

)) ,

where a0...a2nc is the content of the tape, q is the control state, and i is the position of the
head pointer. Each cell also contains an encoding of its index on the tape. This is crucial for
being able to detect invalid head pointer movement later. We require that each configuration
has length 2nc , i.e. we will show the trailing blank symbols explicitly. Two configurations are
separated by a sequence 〈δ〉, where δ should be the transition of the Turing machine that was
used to get from the old configuration (on the right) to the new configuration (on the left).

Once the symbol # has been replaced, the sentential form is a sequence of non-terminals
that are all owned by prover. Prover now can do a left-to-right pass in which she can place
the marker as explained above.

To be precise, the derivation process will proceed in four phases: (1) The initial configura-
tion of the machine is generated. (2) A sequence of configurations of the machine, separated
by the transitions that were used, is generated from right to left. (3) Afterwards, we need to
check that the sequence indeed encodes an accepting branch of a computation of M on w. A
part of this is implemented in the grammar. Another part of this is checked by the inclusion
in the language of the automaton. We elaborate on this below. For two of the conditions, we
need to use the help of the players, since grammar and automaton are only allowed to be
polynomial-sized, and thus cannot process the exponential-sized configurations easily. Prover
does a left-to-right pass over the sequence in which she can place an objection marker to
show why the sequence is not accepting. (4) Refuter can then place a justification marker in
the next configuration to rebut the the objection.

The automaton checks that the resulting terminal word contains exactly one objection
that was not correctly rebutted. This means prover wins if the sequence does not encode an
accepting configuration. We will now look at each phase in detail.

(1) In the first phase, the initial configuration is generated on the tape. During this phase,
none of the players has a choice. After it has finished, the resulting sentential form is

[q0, ($,bin(0))] (w1,bin(1)) . . . (wk,bin(k)) (␣,bin(k+1) . . . (␣,bin(2n
c

)) 〈START 〉 ,

where $ is the marker for the left end of the tape, q0 is the inital state and w = w1...wk.
Note that it is possible to generate the exponential amount of (2nc − k) trailing blank
symbols with a polynomial-sized grammar.

(2) In the second phase, the string is prolonged to the left to represent a branch of the
computation tree of M on w. We give a rough overview of how this can be implemented
in the grammar. Later, we will refine this construction.
Initially, refuter has to replace #. To do this, refuter has four choices: She can (a) write
an arbitrary sequence of symbols x, representing control states, tape symbols and the
symbols (,), [,], 0, 1 and , using rules of the shape #→ #x , (b) write a transition δ ∈ ∆∨
of the Turing machine originating in an existential state by choosing #→ #〈δ〉, (c) give
control over to prover by choosing #→ #P . Prover can then write a transition δ ∈ ∆∧
originating in a universal state and by choosing #P → #〈δ〉. Or refuter can (d) stop
writing the branch by replacing # by the sequence 〈STOP〉, which will end the second
phase.

L. Holík, R. Meyer, and S. Muskalla 21

The sentential form obtained after Phase (2) is not a correctly encoded sequence of configu-
rations that forms an accepting branch of a computation of M on w if and only if at least
one of the following conditions is satisfied.

(a) There is a top-level syntax error, i.e. the sentential form is not of the shape

〈STOP〉{{0 + 1 + q + a+ [+] + (+)+, }∗ 〈δ〉}∗{0+1+q+a+[+]+(+)+, }∗〈START 〉 .

Here, we use curly braces for regular expressions to avoid ambiguity. The symbols q, a, δ
denote control states, tape symbols, and transitions respectively.

(b) There is a low-level syntax error, i.e. one single configuration is not encoded as

{(a, {0 + 1}∗)}∗[q, (a, {0 + 1}∗)]{(a, {0 + 1}∗)}∗ .

(c) There is a transition that was picked although it was not applicable. This means that
control state or the symbol at the position of the head pointer do not match with the
preconditions of the transition. Since prover can exclusively write transitions that require
a universal control state, this will enforce that we let prover choose such transitions.

(d) There is a configuration such that its control state is not the state resulting from the
transition that was applied before.

(e) The leftmost configuration does not contain the accepting control state qaccept.
(f) There is a configuration in which any cell is numbered with a binary string of incorrect

length or the first cell is not numbered with bin(0) or the last cell is not numbered with
bin(2nc).

(g) There is a configuration containing two successive cells (q, v)(q′, v′) such that v, v′ encode
numbers i, j with j 6= i+ 1.

(h) There is a configuration that was modified in an incorrect way (compared to the previous
configuration and the chosen transition). This means the head pointer was moved
inconsistently or a cell content was changed inconsistently. The latter might be the case
if a cell was changed that was not affected by a transition, or the cell that was previously
the position of the head pointer was not changed according to the chosen transition.

The Conditions (a) - (e) can be implemented in the grammar. We create polynomially-
many copies of the symbol # that keep track of a constant amount of information. For
example, to handle a part of Condition (b), we can easily guarantee that exactly one control
state is written between two transitions by going to a copy #ctrl after a transition 〈δ〉 was
inserted. This version of the symbols that allows writing a control state (i.e. there is a rule
#ctrl → #transq for each q ∈ Q), but does not allow writing a transition. As shown in the
rule, we go to a copy #trans after the control states has been inserted. Thus version allows
writing a transition (i.e. there is a rule #trans → #ctrl〈δ〉), but does not allow writing a
control state. To prevent violations of Condition (d), we can also keep track of last control
state q and of the symbol a that is stored in the cell which is the position of the head pointer.
We can implement the transition relation of the Turing machine in the grammar rules to
ensure that only transitions can be picked that require the stored control state and tape
symbol. This means we can only use a rule that inserts 〈δ〉 if δ is a transition of the shape
(q, a) 7→ (q′, a′, d). After the transition has been inserted, we enforce that in the following
configuration, the control state coincides with the control state q′ resulting from applying the
transition, thus ensuring (d) to hold. We can also enforce that the rule that ends the second
phase by inserting 〈STOP〉 can only be picked if the previous control state was qaccept to
handle Condition (e).

22 Summaries for Context-Free Games

Condition (f) can be implemented in the automaton. To check that all binary encodings
of numbers have the correct length nc, the automaton guesses non-deterministically where a
pattern of the form (q, v) occurs, were q is a control state and v ∈ {0 + 1}∗ is a sequence of
length not equal to nc. To detect this, we create nc branches of the automaton that detect
sequences of length 0, ..., nc − 1 and one branch that detects sequences of length at least
nc + 1. The index of the first cell of each configuration has the encoding bin(0) = 0...0.
The automaton can check whether a illegal 1 occurs in the encoding. To do this, it guesses
non-deterministically where a pattern of the form

〉(a, {0 + 1}∗ 1 {0 + 1}∗) + 〉[q, (a, {0 + 1}∗ 1 {0 + 1}∗)]

occurs, where a is a tape symbol, and q is a control state. Note that the symbol 〉 marks
the left end of configuration since it belongs to the sequence 〈δ〉 encoding a transition (or
to 〈STOP〉). Analogously, the automaton can verify that the index of the last cell has the
encoding bin(2nc) = 1...1.

To check Conditions (g) and (h), we require the help of the players. The Phases (3) and
(4) of the derivation process will implement this.

(3) After refuter has decided to end the process by choosing # → 〈STOP〉, we have a
sentential form in which all other symbols are non-terminals owned by prover. Prover
now does a left-to-right pass, in which she can mark a place by an objection symbol to
show that the configuration is not valid. Formally, she can (a) replace a symbol by her
terminal version by choosing x→ xp, (b) place one of two kinds of objection symbols by
choosing a rule x→ ONUM x or x→ OTAPE x, or (c) give control over to refuter by
choosing x→ x̄.
The automaton will later check that the resulting terminal word contains exactly one
objection symbol. If there is no objection, prover admits that the branch is accepting.
Prover has two types of objection symbols. The symbol ONUM can be placed in front of
two successive cells (a, v)(a′, v′) (respectively the variants where one of the cells is the
position of the head pointer) to claim that v and v′ encode numbers i and j such that
j 6= i + 1. It is crucial that j 6= i + 1 can be accepted for a polynomial-sized NFA for
binary encoded numbers i, j ∈

{
0, . . . , 2nc

}
.

To do the check, we guess the position l of v′ (encoding j) that will be the rightmost
deviation from the encoding of i + 1 prior to looking at the two cells. We store the
position in the control state (which we can do since there are only polynomially-many
possibilities, namely log(2nc) = nc).
When the automaton reads the lth bit of v, it stores the bit in its control states. When it
then reads the lth bit of v′ it is able to accept if the v′ does not encode i+ 1. It is crucial
that adding one to a binary number will change the rightmost 0 to 1 and flip all following
1s to 0. The following possibilities arise: (a) After position l, at least one zero follows
in v. In this case, the bit at position l in v′ should coincide since the addition can be
performed further to the right. Check this and accept if the bits are different. (b) After
position l, only 1s follow in v. In this case, the bit at position l in v′ should be different
since it is affected by the addition. Check this and accept if the bits coincide.
The symbol OTAPE can be placed in front of a cell (a, v) to claim that it was modified
in an incorrect way. This means it was modified compared to the previous configuration
although it was not the position of the head pointer in the previous configuration (and
therefore should have stayed the same) or it was the position of the head pointer previously
but was not modified according to the transition.

L. Holík, R. Meyer, and S. Muskalla 23

Since the automaton cannot identify the correct position in the next configuration due
to the polynomial bound on its number of states, we will employ the help of refuter to
identify the cell of the next configuration that the automaton has to compare against.

(4) The automaton guarantees that after an objection symbols is placed, the control is
always given to refuter (by choosing the rule x→ x̄ instead of x→ xp). Formally, the
automaton rejects the input if a second objection symbol occurs or if the prover-version
xp of any terminal occurs.
Assume prover placed the symbol OTAPE in front of a cell in configuration c. Prior
to Phase (3), the sentential form had the shape ...c〈δ〉c′..., were c is the configuration
that resulted from applying transition δ to configuration c′. Refuter can now place a
justification symbol J in c′ to show that the objection is not valid.
If OTAPE was inserted in front of a cell (a, v) in a configuration c, refuter should place
J in front of the preceding cell (b, v′) of the previous configuration c′. This means if v
and v′ encode numbers i and j, we have j = i− 1. (If one of the cells is the position of
the head pointer, the symbol should be inserted in front of [.)
First, the algorithm will check that refuter marked the correct cell. To do this, a procedure
analogous to the one explained in Phase (3) can be used to accept if v′ is not as desired.
Then the automaton can use the marked cell (a, v) in c and the three marked cells
(bj ,bin(j)), (bi,bin(i)), (bi+1,bin(i+ 1)) in c′ (respectively the version with the control
state annotation somewhere) to verify: (a) If (bi,bin(i)) was not the position of the head
pointer in c′, then the cell should remain unchanged, i.e. bi = a. (b) If (bi,bin(i)) was
the position of the head pointer in c′, then a is the symbol that results from applying
the chosen transition. (c) If (a,bin(i)) is the position of the head pointer in c, then
the control state was previously placed at (bj ,bin(j)), (bi,bin(i)), or (bi+1,bin(i + 1)),
according to the chosen transition.
To check (b) and (c), the automaton enforces that there is exactly one transition 〈δ〉
separating the configuration containing OTAPE and the configuration containing J . It
can store the transition δ in its control state while switching between the configurations.
The cases in which (b′,bin(i)) is the first or last cell of a configuration can be treated
similarly.

Note that the operations performed by the automaton that are described as if they would
happen sequentially here are implemented in parallel. This can be done using a constant
number of intersections and unions, without changing the size of the automaton being
polynomial.

Overall, we obtain that if the ATM M accepts w, refuter can find an accepting branch, no
matter which transitions are chosen by prover in the universal states. If refuter writes down
the correct encoding of the corresponding finite sequence of configurations, she is able to
react to any objection prover might place in Phase (3). The finite automaton will not accept,
since it cannot detect a valid objection, so we have derived a word outside its language.

If the ATM M does not accept w, prover has a way of selecting transitions originating
in universal states such that the resulting branch of the computation tree is not accepting,
independent of the choices of refuter in the existential states. The construction guarantees
that prover is allowed to choose the grammar rule that inserts the transition if the control
state in the previous configuration was universal. By choosing the grammar rules that insert
the transitions leading to a non-accepting branch, prover can ensure that no sentential form
encoding a finite sequence of configurations ending in an accepting configuration can be
derived. If refuter tries to cheat by enforcing an infinite derivation, refuter looses the game
by definition. If she cheats by choosing an incorrect encoding (that is not prevented by

24 Summaries for Context-Free Games

the grammar), prover can place an objection mark to which refuter can not react. The
automaton will then detect the valid objection and accept, so we have derived a word in its
language. J

6.2 Membership
The following algorithm implements the fixed-point iteration discussed in Section 3, executed
on formulas in CNF (see the Subsection 5.1).

I Algorithm 32. Given a non-inclusion game and an initial position α, the following algorithm
computes whether refuter has a winning strategy from the given position.
(1) Set σ0

X = false for all X ∈ N . Set i = 0.
(2) Do until σiX ⇔ σi−1

X for all X ∈ N : i = i+ 1; σi = f(σi−1).
(3) Compute σα, and return true iff σα is rejecting.
Here, f is the function combining the right-hand sides of the equations as in Definition 7.

I Theorem 33. Given a non-inclusion game and an initial position, Algorithm 32
computes whether refuter has a winning strategy from the given position in time
O
(
|G|2 · 22|Q|

c1
+ |α| · 22|Q|

c2
)
for some constants c1, c2 ∈ N.

Proof of Theorem 33. We will analyze (1) the number of iterations needed to obtain the
fixed-point solution (2) the time consumption per iteration (3) the cost of constructing and
evaluating the formula for the given initial position.

Let k = 2|Q|2 be the number of boxes. Every clause has at most size k and there are
2k different clauses, so every formula has size at most k · 2k. Computing conjunction and
disjunction according to Lemma 18 is polynomial in the size of the formulas.

To compute the relational composition according to Lemma 20, we need to iterate over
the at most 2k clauses and over the at most (2k)k = 2k2 functions mapping boxes to clauses.
Each clause K and function z determines a clause of the relation composition. To obtain
its boxes, we need to iterate over the at most k boxes ρ of K and compute ρ; z(ρ). To
do this, we need to iterate over the at most k boxes τ of z(ρ) and compute ρ; τ . This
requires that we check for each pair (q, q′′) of states whether there is a suitable q′ such that
(q, q′) ∈ ρ, (q, q′′) ∈ τ . Overall, to compute the relational composition of two formulas, we
need

2k · 2k
2
· k · k · |Q|3 ∈ O

(
22|Q|

c2)
steps, for some constant c2 ∈ N.

(1) The length of any chain of strict implications of formulas over a set of k atomic propositions
is at most 2k. To prove this, note that modulo logical equivalence, a formula is uniquely
characterized by the set of assignments such that the formula evaluates to true under
them. Strict implication between two formulas implies strict inclusion between the sets.
The statement follows since there are at most 2k different truth assignments.
We can use this to obtain that the number of iterations is bounded by |N | · 2k, since
the sequence of intermediary solutions is a chain in the product domain, and the height
of the product domain is the height of the base domain multiplied by the number of
components.

(2) Per iteration, we need to carry out at most |G| conjunctions, disjunctions and relational
compositions. Per grammar rule, we need to compute at most one conjunction or

L. Holík, R. Meyer, and S. Muskalla 25

disjunction, depending on the owner of the non-terminal. For each symbol on the right-
hand side of a grammar rule, we need to compute at most one relational composition.
Overall, for one iteration, we need

|G| ·
(

22|Q|
c2

+ 22|Q|
c3

+ 22|Q|
c4)
∈ O

(
|G| · 22|Q|

c1)
steps, for some constants c1, c3, c4 ∈ N. Here, 22|Q|

c2
is the cost of computing the

relational composition as calculated earlier and 22|Q|
c3

and 22|Q|
c4

are rough estimations
for computing conjunction and disjunction.

Combining (1) and (2) together with the rough estimation |N | ≤ |G| yields the first summand

O
(
|G|2 · 22|Q|

c1)
.

(3) Assume the initial position α has length |α| = l. It remains to compute l − 1 relational
compositions, which can be done in (l − 1) · 22|Q|

c2
steps, and to check whether the

resulting formula is rejecting. The latter can be done by iterating over all at most 2k
clauses, and checking whether one of the at most k boxes in them is rejecting. Checking
whether a box ρ is rejecting can be done in |Q| time, since we need to check for the
absence of all pairs (q0, qf) in ρ, where qf ∈ QF .
Overall, we need

(l − 1) · 22|Q|
c1

+ 2k · k · |Q| ∈ O
(
l · 22|Q|

c2)
steps. J

The following corollary is an immediate consequence of Theorem 31 and Theorem 33.

I Corollary 34. Deciding whether refuter has a winning strategy for a given non-inclusion
game and an initial position is 2EXPTIME-complete.

One should note that the running time of the algorithm is only exponential in the size of the
automaton. If the automaton is assumed to be fixed, the running time of the algorithm is
polynomial in the size of the grammar and in the length l of the initial position. Namely, it
can be executed in O

(
|G|2 + l

)
steps.

6.3 Solving More General Games
One should also note that the algorithm can solve games on the game arena induced by a
grammar not only in the case of the non-inclusion winning condition, but also in a more
general setting. Assume the winning condition is specified by a predicate on the boxes of
the automaton (respectively by a predicate on words that is well-defined on the equivalence
classes introduced by boxes). We can lift the definition to obtain a predicate on CNF-formulas
over boxes by distributing it over conjunction and disjunction. We get that a formula satisfies
the predicate if and only if there is a choice function picking a box out of each clause that
satisfies the predicate. Initializing Proposition 28 with such a choice function will provide a
winning strategy that ensures that the game ends in a word such that its box satisfies the
predicate after finitely many steps.

If the predicate can be evaluated in doubly exponential time (in the size of the whole
input), the time complexity of the algorithm does not change. In this paper, we mostly
considered the reject-predicate, that checks for the absence of a transition (q0, qf) with
qf ∈ QF in boxes (and therefore is satisfied if the words are not in the language of the

26 Summaries for Context-Free Games

automaton). We can also consider its negation, the accept-predicate, that checks for the
presence of such a transition (and therefore is satisfied if the words are in the language of
the automaton). Instantiating the algorithm for this predicate yields a procedure to solve a
type of game in which refuter wants to obtain a word in the regular target language after
finitely many steps. One can show that solving this problem is also 2EXPTIME-complete by
reducing the left-to-right games considered in [32].

7 Experiments

We have implemented our algorithm in C++ [1] and compared it to an implementation of
Cachat’s algorithm [16] for games on pushdown systems. Cachat’s input instances consist of
a pushdown system P with an ownership partitioning on the control states and an alternating
finite automaton over the stack alphabet of P (P -AFA). The first player wins by enforcing a
run into a configuration accepted by the P -AFA. Cachat’s algorithm constructs the winning
region of the first player by saturating the automaton.

To convert instances of our game to that of Cachat, we construct a pushdown system
P that encodes both the grammar G and the target automaton A. A sentential form wXβ

(where X is the left-most non-terminal) will be represented in P by a configuration (Q′, Xβ),
where Q′ is the set of states that A can be in after processing w. To be precise, for each
subset Q′ ⊆ Q of states of A, P has two control states Q′� and Q′©, one for each player.

(1) If P is in control state Q′FF , and the topmost stack symbol is a terminal a ∈ T , it can
be popped and the control state is changed to Q′′FF , where Q′′ is the set of states with
Q′

a→ Q′′.
(2) If P is in control state Q′FF , and the topmost stack symbol is a non-terminal Y owned by

the other player FF , P goes to control state Q′
FF

without modifying the stack.
(3) If P is in control state Q′FF , and the topmost stack symbol is a non-terminal X owned by
FF , there is one transition in P for each rule X → α with X on its left-hand side that
pops X and pushes α without changing the control state.

The P -AFA just checks that the set of states Q′ of the current control state Q′FF does not
contain a final state and that the stack is empty.

We have to encode both the automaton and the grammar into the pushdown system.
If we keep the whole sentential form on the stack, the terminal prefix prevents us from
modifying the non-terminals.

The translation thus embeds a determinized version of A in P . This may cause an
exponential blow-up in the size of the input instance, which reflects the worst case complexity:
Our problem is 2EXPTIME-complete while Cachat’s algorithm is exponential.

For the experiments, we generated random automata using the Tabakov-Vardi model [42].
The generator is parameterized in the number of letters and control states, the percentage of
final states, and the number of transitions per letter (given as a fraction of the number of
states). We adapt the model to generate also grammars with rules of the form X → aY b,
with parameters being the number of rules and non-terminals for each player, and the chances
of a, Y , and b to be present. Since sparse automata and grammars are likely to yield simpler
instances, we focus on dense examples.

For the parameters |Q|, |T |, |N©| and |N�|, we tried out several combinations. The entry
x/y/z in the table below stands for |Q| = x, |T | = y, |N©| = |N�| = z. For each combination,
we generated 50 random automata and grammars, applied three algorithms to them, and
measured how many instances could be solved within 10 seconds and how much time was

L. Holík, R. Meyer, and S. Muskalla 27

consumed for the instances that could be solved on average. We compared: (1) Our algorithm
with a naive Kleene iteration, i.e. all components of the current solution are updated in
each step. (2) Our algorithm with chaotic iteration implemented using a worklist, i.e. only
components whose dependencies have been updated are modified. This is the common way of
implementing a Kleene iteration. (3) Cachat’s algorithm applied to our problem as described
above. To improve the runtime, the target automaton has been determinized and minimized
before creating the pushdown system. We ran our experiments on an Intel i7-6700K, 4GHz.
The durations are milliseconds.

naive Kleene worklist Kleene Cachat
average time % timeout average time % timeout average time % timeout

5/ 5/ 5 65.2 2 0.8 0 94.7 0
5/ 5/10 5.4 4 7.4 0 701.7 0
5/10/ 5 13.9 0 0.3 0 375.7 0
5/ 5/15 6.0 0 1.1 0 1618.6 0
5/10/10 32.0 2 122.1 0 2214.4 0
5/15/ 5 44.5 0 0.2 0 620.7 0
5/ 5/20 3.4 0 1.4 0 3434.6 4
5/10/15 217.7 0 7.4 0 5263.0 16

10/ 5/ 5 8.8 2 0.6 0 2737.8 2
10/ 5/10 9.0 6 69.8 0 6484.9 66
15/ 5/ 5 30.7 0 0.2 0 5442.4 52
10/10/ 5 9.7 0 0.2 0 7702.1 92
10/15/15 252.3 0 1.9 0 n/a 100
10/15/20 12.9 0 1.8 0 n/a 100

Already the naive implementation of Kleene iteration outperforms Cachat’s algorithm, which
was not able to solve any instance with parameters greater than 10/15/15. The worklist
implementation is substantially faster, by three orders of magnitude on average. This confirms
our hypothesis: The stack content is more information than needed for safety verification,
and getting rid of it by moving to the summary domain speeds up the analysis.

One can also implement Cachat using a worklist. Since in every step not only single
transitions of the P -AFA but whole paths in the P -AFA are considered, handling the states
of the P -AFA with a worklist is not possible. But it is possible to handle the states of the
pushdown system P using a worklist: Whenever a transition labeled by stack symbol a is
added to the P -AFA, all control states of P that have a transition that pushes a to the stack
have to be added to the worklist.

Unfortunately, this does not help for the instances obtained by encoding our type of game.
For every non-terminal X owned by player FF (1) all states Q′

FF
of the of the opponent FF

have to be added to the worklist, since there is a transition from Q′
FF

to Q′FF that pops X and
pushes X, and (2) if X occurs on the right-hand side of at least one rule of the grammar,
say in Y → α, all states Q′FF of the of the player FF have to be added to the worklist, since
there is a transition that pops Y and pushes α for each such state.

The terminal symbols are handled in the very first iteration of Cachat. This means that
starting from the second iteration, adding a transition to the P -AFA will cause almost all
states of P to be added to the worklist. In our experiments, the worklist variant was slower
by at least one order of magnitude, even on small examples.

28 Summaries for Context-Free Games

8 Algorithmic Considerations

We discuss how to further speed-up the worklist implementation by two heuristics prominent
in verification: Lazy evaluation [20] and antichains [22, 5, 6]. The heuristics are not meant to
be a contribution of the paper and they are not yet implemented. The point is to demonstrate
that the proposed summary domain combines well with algorithmic techniques. For both
heuristics, it is not clear to us how to apply them to the domain of alternating automata.

The idea of lazy evaluation is to keep composed formulas (F ∨ F ′);M symbolic, i.e.
we store them as a term rather than computing the resulting formula. When having to
evaluate the formula represented by the term, we only compute up to the point where the
value influences the overall answer. Consider the test whether (F ∨ F ′);M is rejecting. If
already F ;M is rejecting, the whole formula represented by the term will be rejecting and
the evaluation of F ′;M can be skipped. .

The idea of the antichain optimization is to identify representative elements in the search
space that allow us to draw conclusions about all other elements. Here, the search space
consists of formulas (representing the intermediate steps of the fixed-point computation).
By Lemma 6, it is sufficient to reason modulo logical equivalence. This allows us to remove
redundant disjuncts and conjuncts, in particular, if F ⇒ G we can prune F from F ∨G and
G from F ∧G. When reasoning over CNFs, this removes from a formula all clauses that are
subsumed by other clauses. It is thus enough to store the CNFs in the form of antichains of
⊆-minimal clauses. The antichain approach benefits from a weaker notion of implication.

8.1 Lazy Evaluation
Assume we are interested in whether refuter wins from a given sentential form α. For
simplicity, introduce a fresh non-terminal S with the single rule S → α. That refuter wins
the game can be concluded as soon as the formula σS becomes rejecting. The fixed-point
iteration does not have to continue beyond this point. Inspired by [20], the idea of early
termination upon reaching a target can be elaborated further into a lazy evaluation technique:
Also compositions of formulas have to be evaluated only up to the point where the value
influences the overall answer. Consider the test whether (F ∨ F ′);M is rejecting. If F ;M is
already rejecting, then the whole formula is rejecting, and the evaluation of F ′;M can be
skipped.

The lazy algorithm evaluates the predicate reject(⊥), which will yield true iff σS is
rejecting. The test is done on the fly, while unfolding the fixed-point computation from ⊥
(X 7→ false for all X ∈ N). The algorithm uses a set of rules (discussed below) that reduce
the test on their left-hand side into a Boolean combination of tests on the right, and which
return a Boolean value on boxes.

The first rule unfolds the fixed-point computation. A reasonable implementation of the
algorithm would not use the Kleene iteration on the product domain from Section 3 but a
variant of the more efficient chaotic iteration (e.g. the worklist algorithm) [38]. The following
rule corresponds to one unfolding of chaotic iteration:

reject(σ) ⇐⇒ reject(σS) ∨ unfold , (I)

where unfold =
{

reject(σ[X 7→ fX(σ)]) , for some X ∈ N with fX(σ) 6v σX ,

false , if fX(σ) v σX for all X ∈ N .

Intuitively, either the formula σS is already rejecting in the current assignment, or it may

L. Holík, R. Meyer, and S. Muskalla 29

become rejecting in some further unfolding of the fixed-point computation. The disjunct
unfold updates one of the variables based on the current assignment σ, or it terminates the
fixed-point computation if no variable can be updated, that is, if the current assignment is
already the least fixed point.

To evaluate the first disjunct in Rule (I), we have to evaluate reject(σS) on a term σS
built on top of boxes using Boolean connectives and relational composition. To evaluate
the second disjunct, we need to decide subsumption. On boxes, reject(ρ) = true iff ρ is
rejecting, and ρ v τ is evaluated according to the notion of subsumption in use. On Boolean
connectives, rejection and subsumption queries are evaluated as Boolean combinations of the
respective queries over the subformulas. If the tested formulas are relational compositions,
then the composition is first pushed down one level using Definition 5, or, on leaf level, it is
eliminated by composing the boxes. This is expressed by the following rules where ρ ∈ MA,
F, F ′,M,M ′, G,G′ ∈ BFA, and {?, ?̄} = {∧,∨}:

reject(F ? G) ⇐⇒ reject(F) ? reject(G) , reject(F ;M) ⇐⇒ reject(eval(F ;M)) ,
F ? F ′ v G ⇐⇒ F v G ?̄ F ′ v G , F ;M v G ⇐⇒ eval(F ;M) v G ,

F v G ? G′ ⇐⇒ F v G ? F v G′ , F v G;M ⇐⇒ F v eval(G;M) ,

where eval(F ? F ′;M) = F ;M ? F ′;M ,

eval(ρ;M ?M ′) = ρ;M ? ρ;M ′ .

Using these rules, the algorithm constructs an alternating proof tree rooted at reject(⊥)
which branches at Boolean connectives on the right-hand sides of the rules. It may conclude
before the fixed-point computation terminates, and when it concludes, the proof tree may
still contain not fully evaluated queries and compositions which do not influence the final
answer. These unfinished computations are efficiency gains over the basic algorithm which
always iterates until fixed point and evaluates all compositions.

We note that if the rules were implemented verbatim, the tree would contain repetitive
evaluations of the same queries and compositions. This could be countered by joining
equivalent queries and keeping the proof in the form of a directed acyclic graph. Similarly, it
is useful to keep occurrences of the same compositions as references to one representative
and evaluate all of them simultaneously by evaluating the representative.

8.2 Antichains
The antichain approach benefits from a weaker notion of implication. Consider a preorder
v ⊆ MA×MA that reflects the reject predicate as follows: If ρ v τ and ρ is rejecting, then
τ should be rejecting. These implications among boxes justify further implications among
formulas. Formally, formula F subsumes G, written F v G, if(∧

ρ,τ∈MA : ρ v τ

ρ⇒ τ

)
|= F ⇒ G .

Under the condition that the following analogue of Lemma 6 holds, it is possible to reason
modulo subsumption instead of implication:

∀F, F ′,M,M ′ ∈ BFA : If F v F ′ and M vM ′, then F ;M v F ′;M ′ . (II)

Subsumption was used in [22, 5, 6], where a fixed point over sets of boxes is computed
to check language inclusion among Büchi automata. For the definition of v, the simplest

30 Summaries for Context-Free Games

possibility is to take inclusion among boxes [22]. A more advanced option, following [6],
further weakens the set inclusion using simulation on states of A.

In Boolean satisfiability, the antichain optimization corresponds to the subsumption rule,
and it is known to have a limited impact on the performance of solvers. The setting we
consider, however, is different. Our formulas are enriched during the computation by new
clauses (that are not derived from others as in SAT). The antichain optimization can therefore
be expected to yield better results for inclusion games and, in fact, has been successfully
implemented for automata models [22, 5, 6].

9 Related Work

We already discussed the relation with Cachat’s work [16]. Walukiewicz [43] studies games
given by a pushdown automaton with a parity function on the states. Similar to our case,
the derived strategies are implementable using a stack. The problem [43] is concerned with
is different from ours in several respects. The game aspect is given by the specification (a
µ-calculus formula), not by the system as in our case. Moreover, (infinite) parity games are
generally harder than safety: [43] is exponential both in the system and in the specification,
while our construction is exponential only in the specification. Piterman and Vardi [33]
study a similar variant of the problem and come up with a solution originating in the
automata-theoretic approach [30].

Walukiewicz reduces solving parity games on the infinite computation tree of a pushdown
system to solving parity games on a finite graph. To do so, instead of the full stack, only the
topmost stack symbol is stored. Whenever a push should be executed, one player guesses
the behavior of the game until the corresponding pop, i.e. she proposes a set of control
states. The other player can decide to skip the subgame between push and pop by selecting
a control state from the set, and the game continues. Alternatively, she can decide to verify
the subgame. In this case, the new symbol becomes top-of-stack, and the game continues
until it is popped. After the pop, the game ends, and which player wins is dependent on
whether the current control state is in the proposed set of states.

This approach can be applied to a context-free game to reduce it to a reachability game
on a doubly-exponentially-sized graph. Before applying a rule to the leftmost non-terminal
X, we let refuter propose a set of boxes that describes the effect of terminal words derivable
from X. Prover can either accept the proposal and select one of the boxes, or she verifies
the proposal. In the latter case, the rest of the sentential form can be dropped. A winning
strategy for refuter in the finite game has to guess the effect of each non-terminal, while our
method deterministically computes it: The guessed effects that will not lead to refuter losing
the subgame are exactly the sets of boxes occurring as the image of a choice function.

The work [32] considers active context-free games where in each turn, player A picks
the position of a non-terminal in the current sentential form and player B picks the rule
that is applied to the non-terminal. It is shown to be undecidable whether player A can
enforce the derivation of a word in a regular language. If one limits the moves of player A to
left-to-right strategies (skipped non-terminals cannot be touched again, the regular target
language may contain non-terminals), one obtains a game that is closely related to our
setting. In fact, the authors show that allowing player A to pick the rules for some of the
non-terminals does not increase the expressive power. Therefore, there are polynomial-time
reductions of our type of game to their type of game and vice versa. In [32], the focus lies on
establishing the lower bounds for the time complexity of various type of active context-free
games. The authors show that deciding the existence of a left-to-right winning strategy is

L. Holík, R. Meyer, and S. Muskalla 31

2EXPTIME-complete, like the problem considered in this paper (Section 6). The upper bound
is shown by using an exponential-time reduction to Walukiewicz [43], and they also present
an optimal algorithm that uses Cachat’s algorithm for pushdown systems. Our algorithm
also has optimal time complexity, but contrary to [32], it is based on procedure summaries
rather than on saturation. The lower bound is shown by encoding an alternating Turing
machine with exponential space as a grammar game, and we adapted their proof to show
Theorem 31. [32] was further elaborated on and generalized in [11, 36].

Methods for solving variants of pushdown games, related mostly to saturation (see [17] for
a survey on saturation-based methods), are implemented in several tools. [13] targets higher-
order pushdown systems, related to it is [14], [41] implements an optimized saturation-based
method, [26] solves the full case of parity games. [34] implements a type directed algorithm
not based on saturation. None of the tools implements procedure summaries, but some can
be used to solve instances of our problem. We plan to carry out a thorough comparison with
these implementations in the future.

Antichain heuristics, discussed in Section 8, were developed in the context of finite
automata and games [44, 45], and generalized to Büchi automata [22, 5, 6] with a fixed point
over sets of boxes. Our lazy evaluation is inspired by [20]. Our framework is compatible
with techniques for reachability in well-structured transition systems (WSTS) that proceed
backwards [4]. We believe that techniques like [29, 23, 28, 7, 24] can be adapted to our
setting. To instantiate general WSTS reachability algorithms, the ordering of configurations
would be based on implication among formulas, the target set would be the upward closure
of the assignment σ where σS is the conjunction of all rejecting boxes and σX = false for
every other X ∈ N , and the initial state would be the assignment ⊥. Another interesting
possibility would be to adapt Newton iteration [19].

The transition monoid can be traced back at least to Büchi [15], and was prominently
used e.g. in [3].

32 Summaries for Context-Free Games

References
1 Implementation of our algorithm. Published: 2016-17-07. URL: https://concurrency.

informatik.uni-kl.de/rigg.html.
2 WALi. Visited: 2016-16-07. URL: https://research.cs.wisc.edu/wpis/wpds/

download.php.
3 A. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi

automata with applications to temporal logic. In ICALP, volume 194 of LNCS, pages
217–237. Springer, 1985.

4 P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In LICS, pages 313–321, 1996.

5 P. A. Abdulla, Y. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr, and T. Vojnar. Sim-
ulation subsumption in Ramsey-based Büchi automata universality and inclusion testing.
In CAV, volume 6174 of LNCS, pages 132–147. Springer, 2010.

6 P. A. Abdulla, Y. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr, and T. Vojnar.
Advanced Ramsey-based Büchi automata inclusion testing. In CONCUR, volume 6901 of
LNCS, pages 187–202. Springer, 2011.

7 P. A. Abdulla, F. Haziza, and L. Holík. All for the price of few. In VMCAI, volume 7737
of LNCS, pages 476–495. Springer, 2013.

8 A. V. Alfred and J. E. Hopcroft. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., 1974.

9 D. Beyer. Software verification and verifiable witnesses (report on sv-comp). In TACAS,
volume 9035 of LNCS, pages 401–416. Springer, 2015.

10 D. Beyer. Reliable and reproducible competition results with benchexec and witnesses
(report on sv-comp). In TACAS, volume 9636 of LNCS, pages 887–904. Springer, 2016.

11 H. Björklund, M. Schuster, T. Schwentick, and J. Kulbatzki. On optimum left-to-right
strategies for active context-free games. In ICDT, pages 105–116. ACM, 2013.

12 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In CONCUR, volume 1243 of LNCS, pages 135–150. Springer,
1997.

13 C. Broadbent, A. Carayol, M. Hague, and Olivier O. Serre. C-SHORe: A collapsible
approach to higher-order verification. ACM SIGPLAN Notices, 48(9):13–24, 2013.

14 C. Broadbent and N. Kobayashi. Saturation-Based Model Checking of Higher-Order Re-
cursion Schemes. In CSL, volume 23 of LIPIcs, pages 129–148. Dagstuhl, 2013.

15 J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic, pages 425–435.
Springer, 1990.

16 T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP, volume
2380 of LNCS, pages 704–715. Springer, 2002.

17 A. Carayol and M. Hague. Saturation algorithms for model-checking pushdown systems.
In AFL, volume 151 of EPTCS, pages 1–24, 2014.

18 B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. CUP, 1990.
19 J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. JACM, 57(6),

2010.
20 J. Fiedor, L. Holík, P. Jankøu, O. Lengál, and T. Vojnar. Lazy automata techniques for

WS1S. Technical Report FIT-TR-2016-01, Brno University of Technology, 2016.
21 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking

pushdown systems. ENTCS, 9:27–37, 1997.
22 S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In TACAS, volume 6015

of LNCS, pages 205–220. Springer, 2010.
23 Z. Ganjei, A. Rezine, P. Eles, and Z. Peng. Lazy constrained monotonic abstraction. In

VMCAI, volume 9583 of LNCS, pages 147–165. Springer, 2016.

https://concurrency.informatik.uni-kl.de/rigg.html
https://concurrency.informatik.uni-kl.de/rigg.html
https://research.cs.wisc.edu/wpis/wpds/download.php
https://research.cs.wisc.edu/wpis/wpds/download.php

L. Holík, R. Meyer, and S. Muskalla 33

24 P. Ganty, J.-F. Raskin, and L. Begin. A complete abstract interpretation framework for
coverability properties of WSTS. In VMCAI, pages 49–64. Springer, 2006.

25 M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games: A saturation
method. In CONCUR, volume 5710 of LNCS, pages 384–398. Springer, 2009.

26 M. Hague and C.-H.L. Ong. Analysing mu-calculus properties of pushdown systems. In
SPIN, volume 6349 of LNCS, pages 187–192. Springer, 2010.

27 M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482.
ACM, 2010.

28 A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof minimization.
In CONCUR, pages 500–515. Springer, 2012.

29 J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. Incremental, inductive coverability. In
CAV, volume 9206 of LNCS, pages 158–173. Springer, 2013.

30 O. Kupferman, N. Piterman, and M. Y. Vardi. An automata-theoretic approach to infinite-
state systems. In Time for Verification: Essays in Memory of Amir Pnueli, volume 6200
of LNCS, pages 202–259. Springer, 2010.

31 Z. Long, G. Calin, R. Majumdar, and R. Meyer. Language-theoretic abstraction refinement.
In FASE, volume 7212 of LNCS, pages 362–376. Springer, 2012.

32 A. Muscholl, T. Schwentick, and L. Segoufin. Active context-free games. Theory of Com-
puting Systems, 39(1):237–276, 2005.

33 N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. In CAV,
volume 3114 of LNCS, pages 387–400. Springer, 2004.

34 S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. A type-directed abstraction refinement
approach to higher-order model checking. In POPL, pages 61–72. ACM, 2014.

35 T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In POPL, pages 49–61. ACM, 1995.

36 M. Schuster and T. Schwentick. Games for active XML revisited. In ICDT, volume 31 of
LIPIcs, pages 60–75. Dagstuhl, 2015.

37 S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, TU Munich, 2002.
38 H. Seidl, R. Wilhelm, and S. Hack. Compiler Design - Analysis and Transformation.

Springer, 2012.
39 O. Serre. Note on winning positions on pushdown games with omega-regular conditions.

IPL, 85(6):285–291, 2003.
40 M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. Technical

Report 2, New York University, 1978.
41 D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algorithms for alternating

pushdown systems with an application to the computation of certificate chains. In ATVA,
volume 4218 of LNCS, pages 141–153. Springer, 2006.

42 D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata constructions.
In LPAR, volume 3835 of LNCS, pages 396–411. Springer, 2005.

43 I. Walukiewicz. Pushdown processes: Games and model-checking. IC, 164(2):234–263,
2001.

44 M. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm for
checking universality of finite automata. In CAV, volume 4144 of LNCS. Springer, 2006.

45 M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imperfect
information. In HSCC, volume 3927 of LNCS, pages 153–168. Springer, 2006.

	1 Introduction
	2 Inclusion Games on Context-Free Grammars
	3 From Inclusion Games to Fixed Points
	3.1 Domain
	3.2 Operations
	3.3 System of Equations

	4 Semantics
	4.1 Emptiness Games
	4.2 The Infinite Tree of Plays vs. the Fixed-Point Solution

	5 Winning Regions and Strategy Synthesis
	5.1 Conjunctive Normal Form
	5.2 Strategy for Prover
	5.3 Non-Inclusion (for Refuter)

	6 Complexity
	6.1 Hardness
	6.2 Membership
	6.3 Solving More General Games

	7 Experiments
	8 Algorithmic Considerations
	8.1 Lazy Evaluation
	8.2 Antichains

	9 Related Work

