
Summaries for Context-Free Games

Lukáš Hoĺık1, Roland Meyer2, and Sebastian Muskalla2

December 15, FSTTCS 2016, Chennai

1 Brno University of Technology, holik@fit.vutbr.cz

2 TU Braunschweig, {roland.meyer, s.muskalla}@tu-braunschweig.de

Motivation

Verification

Verification of context-free systems:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input-output-relation

Stack content not represented

Used more often in SVComp

1

Verification

Verification of context-free systems:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input-output-relation

Stack content not represented

Used more often in SVComp

1

Verification

Verification of context-free systems:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input-output-relation

Stack content not represented

Used more often in SVComp

1

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97]

[SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis [C02] [MSS05] [HO09]

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis [C02] [MSS05] [HO09] ???

2

Synthesis

Synthesis:

Two types of non-determinism:

controllable non-determinism

uncontrollable non-determinism

�

Model as a 2-player game

To solve it: Lift the techniques for verification

State-of-the-art:

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis [C02] [MSS05] [HO09] ??? Next

2

Context-Free Games

Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the

non-terminals

X© → aY | ε

Y� → bX

Finite automaton over terminals TG

q0 q1

a

b

3

Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the

non-terminals

X© → aY | ε

Y� → bX

Finite automaton over terminals TG

q0 q1

a

b

3

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

4

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

4

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

4

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

4

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A)

or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A)

after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

5

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A)

or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A)

after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

5

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A)

or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A)

after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

5

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A) or infinite derivation

�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A) after finitely many steps

�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

5

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A) or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A) after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

5

Summaries for context-free games

How to decide which player wins the game?

Fixed-point iteration over a suitable summary domain

Now:

1. Explain & define domain

2. Explain fixed-point iteration

6

Formulas over the

Transition Monoid

The tree of plays

How to decide whether refuter can win from a given position?

Consider the tree of plays! X© → aY | ε
Y� → bX

Y

bX

baY

...

b

Refuter wins non-inclusion in (ab)∗ by picking X → ε

Y is a winning position for refuter ©

7

The tree of plays - Example

X© → aY | ε
Y� → bX

X

aY

abX

abaY

ababX

... abab

ab

ε

8

The tree of plays - Example

X© → aY | ε
Y� → bX

X

aY

abX

abaY

ababX

... abab

ab

ε

8

Picking X → ε results in word in (ab)∗�

refuter © loses non-inclusion

Always picking X → aY results in infinite play�

© loses by definition

X is a winning position for prover �

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

9

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

9

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

9

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨

 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

9

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

9

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

9

Formulas - Example

∨

∧

∨

∧

∨

... abab

ab

ε

10

Formulas

Remaining problems:

1. Formulas are still infinite

2. Even the set of atomic propositions TG
∗ is infinite

�

Tackle 2. first

11

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

Transition monoid MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

12

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

Transition monoid MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

12

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

Transition monoid MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

12

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff ∀q, q′ ∈ Q :

q
w→ q′ iff q

v→ q′

Transition monoid MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

12

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff ∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

Transition monoid MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

12

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff ∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

Transition monoid MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

12

Transition monoid

Represent equivalence classes by boxes:

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}
∈ P(Q × Q)

Boxes correspond to procedure summaries for programs

(in a precise sense)

13

Transition monoid

Represent equivalence classes by boxes:

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}
∈ P(Q × Q)

Boxes correspond to procedure summaries for programs

(in a precise sense)

13

Transition monoid - Example

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}

q0 q1

a

b

id = [ε] [a] [b] [ab] [ba] [aa] = [bb]

All other boxes represent empty equivalence classes

14

Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes

15

Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes

15

Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes

15

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

16

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

16

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

16

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

16

Formulas - Example

∨

∧

∨

∧

∨

... [abab]

[ab]

[ε]

17

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}

All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

18

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}

All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

18

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

18

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

18

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

18

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

18

Fixed-Point Iteration

Fixed point iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations

Solve using Kleene iteration

Domain:

Finite positive Boolean formulas over MA (up to ⇔)

Partial order: Implication ⇒
Least element: false

19

Fixed point iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations

Solve using Kleene iteration

Domain:

Finite positive Boolean formulas over MA (up to ⇔)

Partial order: Implication ⇒
Least element: false

19

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

20

Fixed point iteration

Theorem

For every sentential form:

The (finite) formula obtained from LFP is logically equivalent to

the (infinite) formula obtained from the tree of plays.

21

Winning Regions

Rejecting

Define the evaluation ϕ so that

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

22

Rejecting

Define the evaluation ϕ so that

ϕ([w]) = 1 iff w 6∈ L(A)

iff [w] ⊆ L(A)

by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

22

Rejecting

Define the evaluation ϕ so that

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

22

Rejecting

Define the evaluation ϕ so that

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

22

Rejecting

Define the evaluation ϕ so that

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

22

Rejecting

Define the evaluation ϕ so that

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1
22

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

23

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

23

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

23

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

23

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

23

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

23

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

24

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

24

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

24

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

24

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

24

Composition

Composition

How to define the composition operator ; that replaces

concatenation . in the system of equations?

25

Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y)

play from Y

(with prefix w/w ′)

26

Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y)

play from Y

(with prefix w/w ′)

26

Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y)

play from Y

(with prefix w/w ′)

26

Composition

F

[w] [w ′]...

;

G

[v] [v ′]...

=

F ;G

[w];G [w ′];G...

[w]; [v ′][w]; [v] [w ′]; [v ′][w ′]; [v]

(F ∗ F ′);G = F ;G ∗ F ′;G

[w]; (G ∗ G ′) = [w];G ∗ [w];G ′

27

Complexity & Performance

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

28

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

28

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

28

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

28

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space [MSS05].

29

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space [MSS05].

29

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space [MSS05].

29

Performance

Comparison of 2EXPTIME algorithms:

Input Computation

Our algorithm

System of equations P Fixed-point iteration 2EXP

Reduction to Cachat [C02]

Determinized automaton EXP Saturation EXP

Idea of Walukiewicz [W96/01]

Finite reachability game 2EXP Saturation P

︸ ︷︷ ︸
guaranteed blow-up

︸ ︷︷ ︸
may be lucky

30

Performance

We have implemented and compared:

Our algorithm with naive Kleene iteration

Our algorithm with worklist-based Kleene iteration

Reduction to Cachat’s pushdown games

Problems with Cachat’s algorithm:

Automaton A needs to be determinized�

Guaranteed blow-up

Algorithmic tricks for Cachat (worklist, ...) not suitable for the

instances generated by the reduction

31

Performance

naive Kleene worklist Kleene Cachat

|Q|/|N|/|T | avg. time % timeout avg. time % timeout avg. time % timeout

5/ 5/ 5 65.2 2 0.8 0 94.7 0

5/ 5/10 5.4 4 7.4 0 701.7 0

5/10/ 5 13.9 0 0.3 0 375.7 0

5/ 5/15 6.0 0 1.1 0 1618.6 0

5/10/10 32.0 2 122.1 0 2214.4 0

5/15/ 5 44.5 0 0.2 0 620.7 0

5/ 5/20 3.4 0 1.4 0 3434.6 4

5/10/15 217.7 0 7.4 0 5263.0 16

10/ 5/ 5 8.8 2 0.6 0 2737.8 2

10/ 5/10 9.0 6 69.8 0 6484.9 66

15/ 5/ 5 30.7 0 0.2 0 5442.4 52

10/10/ 5 9.7 0 0.2 0 7702.1 92

10/15/15 252.3 0 1.9 0 n/a 100

10/15/20 12.9 0 1.8 0 n/a 100

Experiments executed on i7-6700K, 4GHz, times in milliseconds, timeout 10 seconds

32

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Solver technology for systems of equations (Newton iteration)

Applications, e.g. in hardware synthesis

33

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Solver technology for systems of equations (Newton iteration)

Applications, e.g. in hardware synthesis

33

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Solver technology for systems of equations (Newton iteration)

Applications, e.g. in hardware synthesis

33

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Solver technology for systems of equations (Newton iteration)

Applications, e.g. in hardware synthesis

33

Thank you!

33

Questions?

33

	Motivation
	Context-Free Games
	Formulas over theTransition Monoid
	Fixed-Point Iteration
	Winning Regions
	Composition
	Complexity & Performance

