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Verification of context-free systems:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language
Summarization

Compute effect of function calls as input-output-relation
Stack content not represented

Used more often in SVComp
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Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the
non-terminals

Xoﬁ aYy ‘ 15
YD—> bX

Finite automaton over terminals T¢

¥O==0
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Context-free games - Game arena

Game arena:

Vertices: Sentential forms ¢ = (NgU Tg)*
Arcs: Left derivations wXvy =, wny if X —=ne€ Pg

Ownership: Owner of wX~y is the owner of X
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Context-free games - Winning conditions

Winning conditions:

Inclusion game:
Derive a terminal word w € L(A) or infinite derivation
L Safety Game

Non-Inclusion game:
Derive a terminal word w & L(A) after finitely many steps
L Reachability game

Here:

Consider inclusion game for player prover [J

Consider non-inclusion game for player refuter O



Summaries for context-free games

How to decide which player wins the game?

Fixed-point iteration over a suitable summary domain

Now:

1. Explain & define domain

2. Explain fixed-point iteration



Formulas over the
Transition Monoid



The tree of plays

How to decide whether refuter can win from a given position?

Refuter wins non-inclusion in (ab)* by picking X — ¢

Y is a winning position for refuter O
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The tree of plays - Example

° Xo—aYy | e
e YD—}bX

Picking X — ¢ results in word in (ab)*
L refuter O loses non-inclusion

Always picking X — aY results in infinite play
L O loses by definition

X is a winning position for prover [
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Formulas

Problem:
Tree is usually infinite
Observation 1:

Labels of inner nodes do not matter for inclusion
Only ownership is important
~> Replace inner nodes of refuter by Vv

~~ Replace inner nodes of prover by A

Understand tree as (infinite) positive Boolean formula over words



Formulas - Example
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Formulas

Remaining problems:

1. Formulas are still infinite

2. Even the set of atomic propositions T¢™ is infinite

L Tackle 2. first

11
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Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ~4 such that
words are equivalent iff they induce the same state changes on A

W ~aA VvV
iff Vg, eQ: q>q iff g>gq

/
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Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ~4 such that
words are equivalent iff they induce the same state changes on A

W ~aA VvV
iff Vg, eQ: q>q iff g>¢

Transition monoid My is the set of all equivalence classes [w] of ~4

Tc™ is partitioned into equivalence classes of ~ 4

12



Transition monoid

Represent equivalence classes by boxes:

box(w) = {(q,q/) eEQRxQ ‘ g q/} € P(Q x Q)
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Transition monoid

Represent equivalence classes by boxes:
box(w) = {(q,q’) €EQxQ ( q - q’} €P(Q x Q)

Boxes correspond to procedure summaries for programs
(in a precise sense)

13



Transition monoid - Example

box(w) = {(9.4) € @ x @ | 4 % ¢'}

¥o==0

d=[] [ b]  [ab]  [ba] [aa] = [bb]

All other boxes represent empty equivalence classes

14
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Relational composition of boxes

Boxes can be composed using relational composition ;

I~ . [—1.

[a] (6] [ab]

Monoids are isomorphic:

(Ma, ., [e]) = (box(Tg"), ; ,box(e))
CP(@xQ)

L Up to [Ma| < 2!9F equivalence classes

ii5)
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Now: (Infinite) positive Boolean formulas over M,

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite
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Formulas - Example
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From infinite to finite formulas

Observation 3:
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evaluation semantics) to some finite formula
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Infinite formulas define functions F : 2Ma — {0,1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over My
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From infinite to finite formulas

Observation 3:
Every infinite formula over My is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2Ma — {0,1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over My

In the example:
Infinite formula: [e] V ([ab] V ([abab] V ...))
Note: [ab] = [abab] = [ababab] = ...
Finite formula: [¢] V [ab]

How to compute these finite formulas in general?
18
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Fixed point iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations

Solve using Kleene iteration
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Fixed point iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations

Solve using Kleene iteration

Domain:

Finite positive Boolean formulas over Ma (up to <)
Partial order: Implication =

Least element: false

19



Fixed-point iteration - Example

Grammar
Xo—> aY ‘ g
Y[] —  bX

System of equations

Fx = [a; Fy V [e]
Fy = [b]; Fx
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Fixed-point iteration - Example

Grammar
Xo—> aY ‘ g
Y[] —  bX

System of equations
Fx = laliFy Vv [€]
Fy = [b]; Fx

Iteration:
Nr. || Fx | Fy
0 || false false
1| [e] false
2 || [e] [6] = [B]; [€]
3 | [ab] V[e] | [B]
4 || [ab] Vv [e] | [B]; ([ab] V [e])
= [bab] V [b]
< [b]

20



Fixed point iteration

Theorem

For every sentential form:

The (finite) formula obtained from LFP is logically equivalent to
the (infinite) formula obtained from the tree of plays.

21
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Define the evaluation ¢ so that

o(w])=1 iff  w¢L(A) iff [w]C L(A)
by

P MA — {071}

W 1 (qo,qr) & box(w) for all gr € Qr
0 else

\

p(lel) =0 o([b]) =1 ¢([ab]) =0

Sentential form a € ¥ is called rejecting if p(Fy) =1
22
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The set of
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is the for the inclusion game.
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Winning region of prover

Theorem
The set of
WS = {aecd|p(F,) =0}
is the for the inclusion game.

In the example, starting from X:

Both [ab], [¢] contain (qo, qo)
b o([ab]) = 0, ¢([e]) = 0
b o(Fx) = ¢([ab] V [e]) = 0

L X is non-rejecting
Indeed, prover wins inclusion from X
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Winning region of refuter

Theorem
The set of
WE = {aed|p(F)=1}
is the for the non-inclusion game.
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Winning region of refuter

Theorem
The set of
WE = {aed|p(F)=1}
is the for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (qo, go)

" p(Fy) = p([6]) = 1
LY is rejecting

Indeed, refuter wins non-inclusion from Y

24



Composition




How to define the composition operator ; that replaces
concatenation . in the system of equations?
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Composition

Plays from XY decompose:

XY

wY w'Y

wv wv/ w'v w'v
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XY
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wY w'Y

wv wv/ w'v w'v
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Composition

Plays from XY decompose:

XY

play from X
(with suffix Y)

wY w'Y

play from Y
(with prefix w/w’)

wv wv/ w'v w'v
26



A A
(v] W [ )
F; G
A } B

[w]; G W] 6

[w]; (G % G') = [w]; G * [w]; G’

Wil V] Wikl W]
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Algorithm

Given: Game G, A and initial position «
Algorithm for solving non-inclusion:

(1) Set Fx = false for all X € N
(2) Do until FgMd < F2e for all X € N:

F = rhs(F)

(3) Compute F,, and return true iff p(F,) =1

28



Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.
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Complexity
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1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in
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Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in
(9( 2% o 22\0&)

where c1, ¢ € N are constants.

3. Hardness by reduction from acceptance in Turing
machines with exponential space [MSS05].

29



Performance

Comparison of 2EXPTIME algorithms:

Input H Computation
Our algorithm
System of equations ‘ P H Fixed-point iteration ‘ 2EXP
Reduction to Cachat [C02]

Determinized automaton ‘ EXP H Saturation ‘ EXP

Idea of Walukiewicz [W96/01]

Finite reachability game | 2EXP | Saturation | P
guaranteed blow-up may t;erlucky
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Performance

We have implemented and compared:

Our algorithm with naive Kleene iteration
Our algorithm with worklist-based Kleene iteration

Reduction to Cachat's pushdown games

Problems with Cachat’s algorithm:

Automaton A needs to be determinized
L Guaranteed blow-up

Algorithmic tricks for Cachat (worklist, ...) not suitable for the
instances generated by the reduction

31



Performance

naive Kleene worklist Kleene Cachat
[Q|/|N|/|T| || avg. time % timeout | avg. time % timeout | avg. time % timeout
5/ 5/ 5 65.2 2 0.8 0 94.7 0
5/ 5/10 5.4 4 7.4 0 701.7 0
5/10/ 5 13.9 0 0.3 0 375.7 0
5/ 5/15 6.0 0 1.1 0 1618.6 0
5/10/10 32.0 2 122.1 0 2214 .4 0
5/15/ 5 44.5 0 0.2 0 620.7 0
5/ 5/20 3.4 0 1.4 0 3434.6 4
5/10/15 217.7 0 7.4 0 5263.0 16
10/ 5/ 5 8.8 2 0.6 0 2737.8 2
10/ 5/10 9.0 6 69.8 0 6484.9 66
15/ 5/ 5 30.7 0 0.2 0 5442 .4 52
10/10/ 5
10/15/15 252.3 0 1.9 0 n/a 100
10/15/20 12.9 1. 0 n/a 100

Experiments executed on i7-6700K, 4GHz, times in milliseconds, timeout 10 seconds
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Liveness synthesis (infinite words)
Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems
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Liveness synthesis (infinite words)
Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems
Solver technology for systems of equations (Newton iteration)

Applications, e.g. in hardware synthesis

33



Thank youl!



Questions?
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