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Abstract
We study valence systems, finite-control programs over infinite-state memories modeled in terms
of graph monoids. Our contribution is a notion of bounded context switching (BCS). Valence
systems generalize pushdowns, concurrent pushdowns, and Petri nets. In these settings, our
definition conservatively generalizes existing notions. The main finding is that reachability within
a bounded number of context switches is in NP, independent of the memory (the graph monoid).
Our proof is genuinely algebraic, and therefore contributes a new way to think about BCS. In
addition, we exhibit a class of storage mechanisms for which BCS reachability belongs to P.
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1 Introduction

Bounded context switching (BCS) is an under-approximate verification technique typically
applied to safety properties. It was introduced for concurrent and recursive programs [49].
There, a context switch happens if one thread leaves the processor for another thread to be
scheduled. The analysis explores the subset of computations where the number of context
switches is bounded by a given constant. Empirically, it was found that safety violations
occur within few context switches [47, 45]. Algorithmically, the complexity of the analysis
drops from undecidable to NP [49, 26]. The idea received considerable interest from both
practice and theory, a detailed discussion of related work can be found below.

Our contribution is a generalization of bounded context switching to programs operating
over arbitrary memories. To be precise, we consider valence systems, finite-control programs
equipped with a potentially infinite-state memory modeled as a monoid [23, 55, 56]. In valence
systems, both the data domain and the operations are represented by monoid elements, and
an operation o will change the current memory value m to the product m · o. Of course, the
monoid has to be given in some representation.

We consider so-called graph monoids that capture the memories commonly found in
programs, like stacks, counters, and tapes, but also combinations thereof. A graph monoid is
represented by a graph. Each vertex is interpreted as a symbol (say c) on which the operations
push (c+) and pop (c−) are defined. A computation is a sequence of such operations. The
edges of the graph define an independence relation among the symbols that is used to
commute the corresponding operations in a computation. To give an example, if c and d are
independent, the computation d+.c+.d− acts on two counters c and d and yields the values
1 and 0, respectively. Pushdowns are represented by valence systems over graphs without
edges and concurrent pushdowns by complete m-partite graphs (for m stacks). Petri nets
yield complete graphs, blind counter systems complete graphs with self-loops on all vertices.

Our definition of context switches concentrates on the memory and does not reference the
control flow. This frees us from having to assume a notion of thread, and makes the analysis
applicable to sequential programs as well. We define a context switch as two consecutive
operations in a computation that act on different and independent (in the above sense)
symbols. This conservatively generalizes existing notions and yields intuitive behavior where
a notion of context switch is not defined. When modeling concurrent pushdowns, a context
switch indeed corresponds to switching the stack. For Petri nets and blind counter systems,
it means switching the counter. Note, however, that the restriction can be applied to all
memories expressible in terms of graph monoids.

Our main result shows that reachability within a bounded number of context switches
is in NP, for all graph monoids. The result requires a uniform representation for the
computations over very different memories. We prove that a computation can always be split
into quadratically-many blocks (in the number of context switches) – independent of the
monoid. These blocks behave like single operations in that they commute or form inverses
(in the given monoid). With this decomposition result, we develop an automata-theoretic
approach to checking reachability. A more elaborate explanation of the proof approach can
be found in Section 3, where we have the required terminology at hand.

In addition, we investigate the precise complexity of the problem for individual graph
monoids. While there are graph monoids for which our problem is NP-complete (such as
those corresponding to the setting of concurrent pushdowns), we show that for an important
subclass, those induced by transitive forests, the problem can be solved in polynomial time.
Moreover, we describe those graph monoids for which the problem is NL-complete.
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Taking a step back, our approach provides the first algebraic view to context-bounded
computation, and hence enriches the tool box so far containing graph-theoretic interpretations
and logical encodings of computations. We elaborate on the related work.

Related Work. There are two lines of work on BCS that are closely related to ours in that
they apply to various memory structures. Aiswarya [6] and Madhusudan and Parlato [46]
define a graph-theoretic interpretation of computations that manipulate a potentially infinite
memory. They restrict the analysis to computations where graph-based measures like
the split-width or the tree-width are bounded, and obtain general decidability results by
reductions to problems on tree automata. The graph interpretation has been applied to multi
pushdowns [7], timed systems [9, 10], and has been generalized to controller synthesis [8].
It also gives a clean formulation of existing restrictions and uniformizes the corresponding
analysis algorithms, in particular for [49, 36, 37, 40, 31]. Different from under-approximations
based on split- or tree-width, we are able to handle counters, even nested within stacks. We
cannot handle, however, the queues to which those technique apply. Indeed, our main result is
NP-completeness whereas graph-based analyses may have a higher complexity. Our approach
thus applies to an incomparable class of models. Moreover, it contributes an algebraic view
to bounded computations that complements the graph-theoretic interpretation.

The second line of related work are reductions of reachability under BCS to satisfiability
in existential Presburger arithmetic [26, 30]. Hague and Lin propose an expressive model,
concurrent pushdowns communicating via reversal-bounded counters. Their main result is
NP-completeness, like in our setting. The model does not admit the free combination of stacks
and counters that we support. The way it is presented, we in turn do not handle reversal
boundedness, where the counters may change as long as the mode (increasing/decreasing)
does not switch too often. Our approach should be generalizable to reversal boundedness by
replacing the emptiness test in the free automata reduction of Section 5 by a satisfiability
check, using [52]. The details remain to be worked out. Besides providing an incomparable
class of models, our approach complements the logical view to computations.

Reductions to existential Presburger arithmetic often restrict the set of computations by
an intersection with a bounded language [29], like in [26, 5]. The importance of bounded
languages for under-approximation has been observed by Ganty et al. [28, 25].

Besides the above unifying approaches, there has been a body of work on generalizations
of BCS, towards exploring a larger set of computations [36, 41, 24, 12, 51, 2] and handling
more expressive programming models [37, 14, 31, 16]. An unconventional instantance of
the former direction are restrictions to the network topology [15]. As particularly relevant
instantiations of the latter, the BCS under-approximation has been applied to programs
operating on relaxed memories [13, 4] and programs manipulating data bases [3].

The practical work on BCS concentrated on implementing fast context-bounded analyses.
Sequentialization techniques [50] were successful in bridging the gap between the parallel
program at hand and the available tooling, which is often limited to sequential programs. The
idea is to translate the BCS instance into a sequential safety verification problem. The first
sequentialization for BCS has been proposed in [42], [38] gave a lazy formulation, and [17] a
systematic study of when sequentialization can be achieved. The approach now applies to full
C-programs [33] and has won the concurrency track in the softare verification competition.
Current work is on parallelizing the analysis by further restricting the interleavings and in
this way obtaining instances that are easier to solve [48].

Also with the goal of parallelization, recent works study the multi-variate complexity of
context-bounded analyses. While [26, 27] focus on P and NP, [20] studies fixed-parameter
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tractability, and [21] the fine-grained complexity. The goal of the latter work is to achieve
an analysis of comlexity 2kpoly(n), with k a parameter and n the input size. Ideally, this
analysis could be performed by 2k independent threads, each solving a poly-time problem.

Our results contribute to a line of work on valence systems over graph monoids [56].
They have previously been studied with respect to elimination of silent transitions [54], semi-
linearity of Parikh images [19], decidability of unrestricted reachability [57], and decidability
of first-order logic with reachability [23]. See [55] for a general overview.

2 Valence Systems over Graph Monoids

We introduce the basics on graph monoids and valence systems following [56].

Graph Monoids. Let G = (V, I) be an undirected graph, without parallel edges, but possibly
with self-loops. This means I ⊆ V × V , which we refer to as the independence relation,
is symmetric but neither necessarily reflexive nor necessarily anti-reflexive. We use infix
notation and write o1 I o2 for (o1, o2) ∈ I.

To understand how the graph induces a monoid (a memory), think of the nodes o ∈ V
as stack symbols or counters. To each symbol o, we associate two operations, a positive
operation o+ that can be understood as push o or increment o and a negative operation o−,
pop o or decrement o. We call + and − the polarity of the operation. By o± we denote an
arbitrary element from {o+, o−}. Let O = {o+, o− | o ∈ V } denote the set of all operations.
We refer to sequences of operations from O∗ as computations. We lift the independence
relation to operations by setting o1

± I o2
± if o1 I o2. We also write v1 I v2 for v1, v2 ∈ O∗

if the operations in the computations are pairwise independent, and similar for subsets of
operations O1 I O2 with O1,O2 ⊆ O.

We obtain the monoid by factorizing the set of all computations. The congruence
will identify computations that order independent operations differently. Moreover, it will
implement that o+ followed by o− should have no effect, like a push followed by a pop.
Formally, we define ∼= as the smallest congruence (with respect to concatenation) on O∗
containing o1

±.o2
± ∼= o2

±.o1
± for all o1 I o2 and o+.o− ∼= ε for all o.

The graph monoid for graph G is MG = O∗/∼=. For a word w ∈ O∗, we use [w]M ∈MG

to denote its equivalence class. Multiplication is [u]M · [v]M = [u.v]M, which is well-defined as
∼= is a congruence. The neutral element of MG is the equivalence class of ε, 1M = [ε]M.

Recall that an element x of a monoid M is called right-invertible if there is y ∈M such
that x · y = 1M . We lift this notation to O∗ by saying that w ∈ O∗ is right-invertible if its
equivalence class [w]M ∈MG is.

Valence Systems. Given a graph G, a valence system over the graph monoid MG is a pair
A = (Q,→), where Q is a finite set of control states and →⊆ Q × (O ∪· {ε}) × Q is a set
of transitions. A transition q1

x−→ q2 is labeled by an operation on the memory. We write
q1 → q2 if the label is ε, indicating that no operation is executed. The size of A is |A| = |→|.
We use O(A) to access the set of operations that label transitions in A.

A configuration of A is a tuple (q, w) ∈ Q×O∗ consisting of a control state and the sequence
of storage operations that has been executed. We will restrict ourselves to configurations
where w is right-invertible. More precisely, in (q, w) a transition q1

x−→ q2 is enabled if q = q1
and w.x is right-invertible. In this case, the transition leads to the configuration (q2, w.x),
and we write (q, w)→ (q2, w.x). A run is a sequence of consecutive transitions.

This restriction to right-invertible configurations is justified by the definition of the
reachability problem for valence systems. It asks, given a valence system with two states
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qinit , qfin, whether we can reach qfin with neutral memory from qinit with neutral memory,
i.e. whether there is a run from (qinit , ε) to (qfin, w) with [w]M = 1M. To be able to reach
such a configuration (qfin, w) from some configuration (q, w′), w′ has to be right-invertible.

Examples. Figure 1 depicts various graphs. The graph monoid of each of these graph
models a commonly used storage mechanism, i.e. it represents the behavior of the storage.
(a) Valence systems for this graph are pushdown systems over the stack alphabet {a, b, c}.
(b) Valence systems for this graph can be seen as concurrent pushdown systems with two

stacks, each over a binary alphabet.
(c) Petri nets resp. vector addition systems with four counters/places p1, p2, p3, p4 can be

modeled as valence systems for this graph. Since the valence system labels transitions
by single increments or decrements, the transition multiplicities are encoded in unary.

(d) Integer vector addition systems resp. blind counter automata with counters c1, c2, c3
(that may assume negative values) can be seen as valence systems for this graph.

•
a

•
b

•
c

(a)

•0`

•1`

•0r

•1r

(b)

•p1

•p2

•p3

•p4

(c)

•
c1

•c2

•
c3

(d)

Figure 1. Various examples of graphs representing commonly used storage mechanism.

What about Queues? Let us quickly comment on why it is hard to fit queues into this
framework. An appealing aspect of valence automata over graph monoids is that by using the
monoid identity as the target for reachability problems (resp. as an acceptance condition [19,
54, 56, 57]), we can realize a range of storage mechanisms by only varying the underlying
monoid. This is because in the mechanisms that we can realize, the actions (or compositions
of actions) that transform the empty storage into the empty storage are precisely those that
equal the identity transformation.

In order to keep this aspect, we would need to construct a monoid whose generators can
be interpreted as queue actions so that a sequence of generators transforms the empty queue
into the empty queue if and only if this sequence evaluates to the identity of the monoid.
This, however, is not possible: Suppose that a and b represent enqueue operations and that
ā and b̄ are the corresponding dequeue operations. Each of the action sequences a.ā and
b.b̄ transforms the empty queue into the empty queue, but a.b.b̄.ā does not (it is undefined
on the empty queue). Hence, in the monoid, we would want to have aā = 1, bb̄ = 1, but
abb̄ā 6= 1, which violates associativity. Hence, although it is possible to model queue behavior
in a monoid [32, 34, 35], one would need a different target element (or set).

3 Bounded Context Switching

We introduce a notion of bounded context switching that applies to all valence systems, over
arbitrary graph monoids. The idea is to let a new context start with an operation that is
independent of the current computation, and hence intuitively belongs to a different thread.
We elaborate on the notion of dependence.
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We call a set of symbols V ′ ⊆ V dependent, if it does not contain o1, o2 ∈ V , o1 6= o2
with o1 I o2. A set of operations O′ ⊆ O is dependent if its underlying set of symbols
{o | o+ ∈ O′ or o− ∈ O′} is. A computation is dependent if it is over a dependent set of
operations. A valence system is said to be dependent if the operations labeling the transitions
form a dependent set.

I Definition 3.1. Given w ∈ O+, its context decomposition is defined inductively: If w is
dependent, w is a single context and does not decompose. Else, the first context w1 of w is
the (non-empty) maximal dependent prefix of w. Then, the context decomposition of w is
w = w1, . . . , wk, where w2, . . . , wk is the context decomposition of the rest of the word. The
number of context switches in w, cs(w), is the number of contexts minus one. For technical
reasons, it will be convenient to define cs(ε) = −1.

We study reachability under a restricted number of context switches.

Reachability under bounded context switching (BCSREACH)
Given: Valence system A, initial state qinit , final state qfin, bound k in unary.
Decide: Is there a run from (qinit , ε) to (qfin, w) so that [w]M = 1M and cs(w) 6 k?

In all abovementioned graph monoids, the restriction has an intuitive meaning that generalizes
existing results. Using the finite states, our notion of BCS also permits a finite shared memory
among the threads. In addition, our definition applies to all storage structures expressible in
terms of graph monoids, including combinations like stacks of counters.

I Lemma 3.2. (BCSREACH) yields the following restriction:

(1) On pushdowns, the notion does not incur a restriction.
(2) On concurrent pushdowns, the notion corresponds to changing the stack k-times and

hence yields the original definition [49].
(3) On Petri nets and blind counters, the notion corresponds to changing the counter k-times.

Our main result is this.

I Theorem 3.3. (BCSREACH) is in NP, independent of the storage graph.

Note that the NP upper bound matches the lower bound in the case of concurrent push-
downs [39]. We consider the proof technique the main contribution of the paper. Different
from existing approaches, which are based on graph interpretations of computations or
encodings into Presburger, ours is of algebraic nature. With an algebraic analysis, given in
Section 4, we simplify the problem of checking whether a given computation reduces to one,
[w]M = 1M. We show that such a reduction exists if and only if the computation admits
a decomposition into so-called blocks that reduce to one in a strong sense. There are two
surprising aspects about the block decomposition. First, the strong reduction is defined
by either commuting two blocks or canceling them if they are inverses. This means the
blocks behave like operations, despite being full subcomputations. Second, the decomposition
yields only quadratically-many blocks in the number of context switches (important for
NP-membership). The block decomposition is the main technical result of the paper.

The second step, presented in Section 5, is a symbolic check for whether a computation
exists whose block decomposition admits a strong reduction. We rely on automata-theoretic
techniques to implement the operations of a strong reduction. Key is a saturation based on
which we give a complete check of whether two automata accept blocks that are inverses.
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4 Block Decomposition

In this section, we show how to decompose a computation that reduces to the neutral element
into polynomially-many blocks such that the decomposition admits a syntactic reduction to ε.
The size of the decomposition will only depend on the number of contexts of the computation
and not on its length. This result will later provide the basis for our algorithm.

To be precise, we restrict ourselves to computations with so-called irreducible contexts.
In the next section, we will prove that the restriction to this setting is sufficient.

I Definition 4.1. We call a computation w ∈ O∗ irreducible if it cannot be written as
w = w′.a.wI .b.w

′′ such that a = o+, b = o− and o commutes with every symbol in wI , or
a = o−, b = o+, o I o and o commutes with every symbol in wI .

In other words, a computation is irreducible if we cannot eliminate a pair o+.o− after using
commutativity. This is in fact the standard definition of irreducibility in the so-called trace
monoid, which we do not introduce here.

Our goal is to decompose irreducible contexts such that the decomposition of all contexts
in the computation admits a syntactic reduction defined as follows.

I Definition 4.2 ([44]). Let w1, w2, . . . , wn be a sequence of computations in O∗. A free
reduction is a finite sequence of applications of the following rewriting rules to consecutive
entries of the sequence that transforms w1, . . . , wn into the empty sequence.

(FR1) wi, wj 7→free ε , applicable if [wi.wj ]M = 1M.
(FR2) wi, wj 7→free wj , wi , applicable if wi I wj

We call w1, w2, . . . , wn freely reducible if it admits a free reduction.

Being freely reducible is a strictly stronger property than [w1.w2. . . . .wn]M = 1M: It means
that the sequence can be reduced to 1M by block-wise canceling, Rule (FR1), and swapping
whole blocks, Rule (FR2). Indeed, consider o1

+.o2
+, o2

−, o1
− where no two symbols commute.

We have [o1
+.o2

+.o2
−.o1

−]M = 1M, but the sequence is not freely reducible.
The decomposition of a computation w with [w]M = 1M into its single operations is always

freely reducible. The main result of this section is that for a computation with irreducible
contexts, we can always find a freely-reducible decomposition whose length is independent of
the length of the computation.

I Theorem 4.3. Let w be a computation with [w]M = 1M and let w = w1 . . . wk be its decom-
position into irreducible contexts. There is a decomposition of each wi = wi,1.wi,2 . . . wi,mi

such that mi 6 k − 1 and the sequence

w1,1, w1,2, . . . , w1,m1 , w2,1, w2,2, . . . , w2,m2 , . . . , wk,1, wk,2, . . . , wk,mk

is freely reducible.

Note that the number of words occurring in the decomposition is bounded by k2. Theorem 4.3
can be seen as a strengthened version of Lemma 3.10 from [44]: We use the bound on the
number of contexts to obtain a polynomial-size decomposition instead of an exponential one.
However, the proofs of the two results are vastly different.
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Constructing a Freely-Reducible Decomposition. The rest of this section will be dedicated
to the proof of Theorem 4.3. Let w ∈ O∗ be the computation of interest with [w]M = 1M.
We assume that it has length n and w = w1 . . . wk is its decomposition into contexts. For
the first part of the proof, we do not require that each wi is irreducible. As [w]M = 1M, w
can be transformed into ε by finitely often swapping letters and canceling out operations.
We formalize this by defining transition rules, similar to the definition of a free reduction.

For the technical development, it will be important to keep track of the original position
of each operation in the computation. To this end, we see w as a word over O × {1, . . . , n},
i.e. we identify the xth operation a of w with the tuple (a, x). For ease of notation, we write
w[x] for the xth operation of w. The annotation of letters by their original position will be
preserved under the transition rules.

I Definition 4.4. A reduction of w is a finite sequence of applications of the following
rewriting rules that transforms w into into ε.

(R1) w′.w[x].w[y].w′′ 7→red w
′.w′′ , applicable if w[x] = o+, w[y] = o− for some o.

(R2) w′.w[x].w[y].w′′ 7→red w
′.w′′ , applicable if w[x] = o−, w[y] = o+ for o I o.

(R3) w′.w[x].w[y].w′′ 7→red w
′.w[y].w[x].w′′, applicable if w[x] ∈ o1

±, w[y] ∈ o2
± for o1 I o2,

o1 6= o2.

If a word u can be transformed into v using these rules, we write u 7→∗red v. Note that a
reduction of w to ε can be seen as a free reduction of the sequence we obtain by decomposing
w into single operations.

I Lemma 4.5. For a word w, we have [w]M = 1M iff w admits a reduction.

Consequently, we may fix a reduction π = w 7→∗red ε that transforms w into ε. The following
definitions will depend on this fixed π.

I Definition 4.6. We define a relation Rπ that relates positions of w that cancel in π, i.e.

w[x] Rπ w[y] if w′.w[x].w[y].w′′ 7→red w
′.w′′ or w′.w[y].w[x].w′′ 7→red w

′.w′′ is used in π .

We lift it to infixes of w by defining inductively

t1s1 Rπ s2t2 if there are contexts wi = wi1.t1.s1.wi2 and wj = wj1.s2.t2.wj2

of w such that s1 Rπ s2 and t1 Rπ t2 .

An infix u of a context wi is called a cluster if there is an infix u′ of a context wj such that
u Rπ u

′. Moreover, if u is a maximal cluster in wi, then it is called a block.

Note that Rπ is symmetric by definition. In the following, when we write s1 Rπ s2, we will
assume that s1 appears before s2 in w, i.e. w = w′.s1.w

′′.s2.w
′′′. We now show that each

context has a unique decomposition into blocks. Afterwards, we will see that the resulting
block decomposition is the decomposition required by Theorem 4.3.

I Lemma 4.7. Every context has a unique factorization into blocks.

To prove the lemma, we show that each position belongs to at least one block and to at most
one block. We call the unique factorization of a context wi into blocks the block decomposition
of wi (induced by π) and denote it by

wi = wi,1, . . . , wi,mi
.
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The block decomposition of w (induced by π) is the concatenation of the block decompositions
of its contexts,

w = w1,1, . . . , w1,m1 , . . . , wk,1, . . . , wk,mk
.

Note that if u is a block and u Rπ v, then v is a block as well. Therefore, Rπ is a one-to-one
correspondence of blocks. It remains to prove that the block decomposition of w admits a
free reduction. We will show that we can inductively cancel out blocks pairwise, starting
with an innermost pair. Being innermost is formalized by the following relation.

I Definition 4.8. We define relation 6w on Rπ-related pairs of blocks by
(s1 Rπ s2) 6w (t1 Rπ t2) if w = w(1).t1.w

(2).s1.w
(3).s2.w

(4).t2.w
(5) for appropriately chosen

w(1), . . . , w(5). A pair s1 Rπ s2 minimal wrt. this order is called minimal nesting in w.

Note that we still assume that all letters are annotated by their position. This means if
w(1), . . . , w(5) exist, they are uniquely determined.

I Lemma 4.9. 6w has a minimal nesting.

The next lemma states that s1 Rπ s2 implies that s2 is (a representative of) a right inverse
of s1. While we already know that the operations in s1 cancel with those in s2, it could
ostensibly be the case that [s2]M is a left-inverse to [s1]M.

I Lemma 4.10. If s1 Rπ s2, then [s1.s2]M = 1M.

I Proposition 4.11. Let π : w →∗red ε be a reduction of w. The block decomposition of w
induced by π is freely reducible.

Proof. If w = ε, then there is nothing to do. Otherwise, w decomposes into at least two
blocks. We proceed by induction on the number of blocks. In the base case, let us assume
that w = u, v is the block decomposition, where u Rπ v has to hold. Using Lemma 4.10,
u, v 7 (FR1)−−−−→free ε is the desired free reduction.

In the inductive step, we pick a minimal nesting s1 Rπ s2 in w. As argued in Lemma 4.9,
this is always possible. We may write

w = w1 . . . wi1s1wi2︸ ︷︷ ︸
context wi

. . . wj1s2wj2︸ ︷︷ ︸
context wj

. . . wk .

Since s1 Rπ s2, we know that by definition of Rπ, π has to move each letter from s1 next to
the corresponding letter of s2 or vice versa.

Let us consider the effect of π on the infix wi2 . . . wj1 . Without further arguments, the
reduction π could cancel some letters inside this infix, and it can swap the remaining letters
with the letters in s1 or s2. In fact, there can be no canceling within wi2 . . . wj1 , as s1 Rπ s2
was chosen to be a minimal nesting: Assume that wi2 . . . wj1 contains some letters a, b
with a Rπ b. Pick the unique blocks u, v to which they belong, and note that we have
(u Rπ v) <w (s1 Rπ s2), i.e. (u Rπ v) 6w (s1 Rπ s2) and (u, v) 6= (s1, s2), a contradiction to
the minimality of s1 Rπ s2.

Hence, the reductions needs to swap all letters in wi2 . . . wj1 with s1 or s2 and we have
s1 I wi2 . . . wj1 I s2. We construct a free reduction as follows:

w1 . . . wi1s1wi2wi+1 . . . wj−1wj1s2wj2 . . . wk

7 (FR2)−−−−→
∗

free w1 . . . wi1wi2wi+1 . . . wj−1wj1s1s2wj2 . . . wk

7 (FR1)−−−−→free w1 . . . wi1wi+1 . . . wj−1wj2 . . . wk =: w′ .
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The applications of Rule (FR2) are valid as s1 I wi2 . . . wj1 I s2 holds. The application of
Rule (FR1) to s1, s2 is valid by Lemma 4.10.

Let us denote by w′ the result of these reduction steps. We consider the reduction π′ that
is obtained by restricting π to transitions that work on letters still present in w′. Indeed, π′
reduces w′ to ε. In particular, for each operation in w′, the operation it cancels with is the
same in π and π′. Consequently, the relation Rπ′ is the restriction of Rπ to the operation still
occurring in w′, and the block decomposition of w′ induced by π′ is the block decomposition
of π minus the blocks s1, s2 that have been removed.

We may apply induction to obtain that w′ admits a free reduction. We prepend the
above reduction steps to this free reduction to obtain the desired reduction for w.

We emphasize the fact that we have not used in the proof that the wi are contexts. This
is important, as the context decompositions of w and w′ can differ substantially. Potentially,
we have that w consists of four contexts, w = w1, s1, w2, s2, but after canceling s1 with s2,
w1 and w2 merge to a single context, w′ = w1.w2. As we have preserved Rπ and its induced
block decomposition, this does not hurt the validity of the proof. J

A Bound on the Number of Blocks. It remains to prove the desired bound on the number
of blocks. To this end, we will exploit that each context wi is irreducible.

I Proposition 4.12. Let w be a computation with irreducible contexts and π : w →∗red ε a
reduction. In the block decomposition of w induced by π, mi 6 k − 1 holds for all i.

We prove the proposition in the form of two lemmas.

I Lemma 4.13. The relation Rπ never relates blocks from the same context.

The following lemma allows us to bound the number of blocks in a context by the total
number k of contexts.

I Lemma 4.14. For any two contexts wi and wj, there is at most one block in wi that is
Rπ-related to a block in wj.

Proof. Towards a contradiction, assume that some context contains two blocks that are
Rπ-related to a block from the same context. Let us consider the minimal i such that wi
contains such blocks. Let wj be the context to which the two blocks are related. By the
choice of i, wi occurs in w before wj does.

We pick s1, t1 as a pair of blocks in wi canceling with blocks from wj with minimal
distance, i.e. wi = wi1s1wi2t1wi3 where wi2 contains no block that is canceled by some block
in wj . Let s2, t2 be the blocks in wj such that s1 Rπ s2, t1 Rπ t2. We have to distinguish
two cases, depending on the order of occurrence of s2 and t2 in wj . In the first case, we have
wj = wj1t2wj2s2wj3 and thus

w = w1 . . . wi−1 wi1s1wi2t1wi3︸ ︷︷ ︸
context wi

wi+1 . . . wj−1 wj1t2wj2s2wj3︸ ︷︷ ︸
context wj

wj+1 . . . wk .

Our goal is to show that wi2 and wj2 have to be empty. We then obtain s1t1 Rπ t2s2, a
contradiction to the definition of blocks as maximal Rπ-related infixes in each context.

We start by assuming that wi2 contains some operation b. As π reduces w to ε, w contains
some operation c that b cancels with. We first note that c cannot be contained in wj , as we
have chosen s1, t1 such that wi2 contains no block that cancels with a block of wj . Assume
that c is contained in the prefix w1 . . . wi−1wi1 . Reduction π either needs to swap b or c
with s1, or it needs to swap s2 with b (to cancel s1). In any case, by definition of 7→red,
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this means s1 contains an operation that commutes with b and is distinct from b. However,
this is impossible, as s1 and b are contained in the same context wi, and contexts do not
contain distinct independent symbols. For the same reason, c cannot be contained in the
suffix wj3wj+1 . . . wk.

If c is contained in the infix wi+1 . . . wj−1, π needs to swap b with t1, or c with t1, or
t2 with c. In any case, this means t1 contains an operation that commutes with b and is
distinct from b. However, this is impossible, as t1 and b are contained in the same context
wi, and contexts do not contain distinct independent symbols.

Consequently wi2 needs to be empty. Let us assume that wj2 contains an operation
b, and let c denote the operation it cancels with. As for wi2 , we can show that c can
neither be contained in the prefix w1 . . . wi−1wi1 , nor in the suffix wj3wj+1 . . . wk, nor in the
infix wi+1 . . . wj−1. We conclude that wj2 is also empty and obtain a contradiction to the
maximality of the blocks as explained above.

It remains to consider the second case, i.e. wj = wj1s2wj2t2wj3 and

w = w1 . . . wi−1 wi1s1wi2t1wi3︸ ︷︷ ︸
context wi

wi+1 . . . wj−1 wj1s2wj2t2wj3︸ ︷︷ ︸
context wj

wj+1 . . . wk .

Reduction π either needs to swap s1 with t1 or equivalently s2 with t1. Again by definition
of 7→red, this means there is an operation a in s1 and an operation b in t1 such that a I b
and a, b have distinct symbols. Since s1, t1 and s2, t2 belong to the same context, this is
impossible. J

Lemma 4.13 and Lemma 4.14 together prove Proposition 4.12, finishing the proof of Theo-
rem 4.3.

5 Decision Procedure

Given a valence system A with states qinit and qfin , and a bound k, we give an algorithm that
checks whether there is a run from (qinit , ε) to (qfin, w) such that [w]M = 1M and cs(w) 6 k.

Implementing Irreducibility. The theory we have developed above applies to irreducible
contexts. To determine the irreducible versions of contexts in A, we define a saturation
operation on valence systems. The algebraic idea behind the saturation is the following.

I Lemma 5.1. Let w be a dependent computation. Then w can be turned into an irreducible
computation by applying the following rules: o+.o− 7→ ε and, provided o I o, o−.o+ 7→ ε.

To see the lemma, note that in a dependent computation, reducible operations o+ and o−
cannot be separated by an operation on a different symbol. Hence, o+ and o− are placed
side by side (potentially after further reductions). If o I o does not hold, the first rule is
sufficient for the reduction. If o I o does holds, we may find o−.o+ and need both rules.

The saturation operation implements these two rules. Since Lemma 5.1 assumes a
dependent computation, we consider a dependent valence system B = (P, ). The saturation
is the valence system sat(B) = (P, sat) with the same set of control states. The transitions
are defined by requiring  ⊆  sat and exhaustively applying the following rules:

(1) If p1
o+

 sat p 
∗
sat p

′ o
−

 sat p2, add an ε-transition p1  sat p2.
(2) If p1

o−

 sat p 
∗
sat p

′ o
+

 sat p2 and o I o, add an ε-transition p1  sat p2.

Here, p ∗sat p
′ denotes that p′ is reachable from p by a sequence of ε-transitions.
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I Remark. In the worst case, we add |P |2 many transitions.

I Lemma 5.2. There is a computation (q1, ε) → (q2, u) in B if and only if there is a
computation (q1, ε)→ (q2, v) with v irreducible and u ∼= v in sat(B).

The valence system A = (Q,→) of interest may not be dependent. We will determine
dependent versions of it (one for each context) by restricting to a dependent set of operations
O′ ⊆ O. The restriction is defined by A[O′] = (Q,→ ∩ (Q× (O′ ∪ {ε})×Q)).

Representing Block Decompositions. Theorem 4.3 considers a computation decomposed
into irreducible contexts w1 to wk. It shows that each context wi can be further decomposed
into at most k blocks such that the overall sequence of blocks w1,1, . . . , wk,mk

freely reduces
to 1M. Our goal is to represent the block decompositions of all candidate computations in a
finite way. To this end, we analyze the result more closely.

The decomposition into contexts means there are dependent sets O1, . . . ,Ok ⊆ O such
that each context wi only uses operations from the set Oi. The decomposition into blocks
means there are n = k2 computations v1 to vn and states q1 to qn−1 such that vi leads from
qi−1 to qi with q0 = qinit and qn = qfin. The last thing to note is that a block itself does
not have to be right-invertible. This means we should represent block decompositions by
(non-deterministic finite) automata rather than valence systems.

We define, for each pair of states qi, qf ∈ Q, each dependent set of operations Ocon ⊆ O,
and each subset Obl ⊆ Ocon the automaton

N(qi, qf ,Ocon,Obl) = 2nfa(qi, qf , sat(A[Ocon])[Obl ]) .

Function 2nfa understands the given valence system sat(A[Ocon])[Obl ] as an automaton, with
the first parameter as the initial and the second as the final state. The set Ocon will be the
operations used in the context of interest. As these operations are dependent, sat(A[Ocon])
will include the irreducible versions of all computations in A[Ocon], Lemma 5.2. The second
restriction to Obl identifies the operations of one block in the context.

With this construction at hand, we define our representation of block decompositions.

I Definition 5.3. A test for the given (BCSREACH)-instance is a sequence N1, . . . , Nn of
n = k2 automata Ni = N(qi−1, qi,Oj ,Oj,i) with j = d ik e, q0 = qinit , and qn = qfin.

The following lemma links Theorem 4.3 and the notion of tests. With Theorem 4.3, we have
to check whether there is a computation w from qinit to qfin with cs(w) 6 k whose block
decomposition admits a free reduction. With the analysis above, such a computation exists
iff there is a test N1 to Nn whose automata accept the blocks in the decomposition.

I Lemma 5.4. We have (qinit , ε)→ (qfin, w) with cs(w) 6 k and [w]M = 1 in A iff there is
a test N1, . . . , Nn and computations v1 ∈ L(N1) to vn ∈ L(Nn) that freely reduce to 1M.

Determining Free Reducibility. Given a test N1, . . . , Nn, we have to check whether the
automata accept computations that freely reduce to 1M. To get rid of the reference to single
computations, we now define a notion of free reduction directly on sequences of automata.
This means we have to lift the following operations from computations to automata. On
computations u and v, a free reduction may check commutativity, u I v, and whether the
computations are inverses, [u]M · [v]M = 1M. Consider Nu and Nv from N1, . . . , Nn.

Rather than checking whether Nu and Nv accept computations that commute, the free
reduction on automata will check whether the alphabets are independent, O(Nu) I O(Nv).
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To see that this yields a complete procedure, note that Lemma 5.4 existentially quantifies over
all tests, and hence all sets of operations to construct Nu and Nv. If there are computations
u and v that commute in the free reduction, we can construct the automata Nu and Nv by
restricting to the letters in these words. This will still guarantee u ∈ L(Nu) and v ∈ L(Nv).

To check whether Nu and Nv accept computations that multiply up to 1M, we rely on
the syntactic inverse. Consider a computation u that contains negative operations o− only
for symbols with o I o. In this case, the syntactic inverse sinv(u) is defined by reversing the
letters and inverting the polarity of operations. The operation is not defined otherwise. The
following lemma is immediate.

I Lemma 5.5. If u, v ∈ O∗ are irreducible, dependent with [u]M · [v]M = 1M, then v = sinv(u).

The idea is to admit v as the inverse of u if v = sinv(u) holds. The equality will of course
entail that v is the inverse of u, for any pair of computations. Lemma 5.5 moreover shows
that for irreducible, dependent computations the check is complete. Since Nu and Nv are
dependent and saturated, it will be complete (Lemma 5.2) to use the syntactic inverse also
on the level of automata.

The definition swaps initial and final state, turns around the transitions, removes the
negative operations on non-commutative symbols, and inverts the polarity of the others.
Formally, the syntactic inverse yields sinv(Nu) = (Q, qu,fin, remswap(→−1

u ), qu,init). The
reverse relation contains (q2, o

±, q1) ∈ →−1
u iff (q1, o

±q2) ∈ →u. Function remswap removes
transitions with operations o− for which o I o does not hold and inverts the remaining
polarities. The construction guarantees that sinv(L(Nu)) = L(sinv(Nu)). With this, the
check of whether Nu and Nv contain computations u and v with v = sinv(u) amounts to
checking whether Nv and sinv(Nu) have a computation in common.

I Lemma 5.6. There are u ∈ L(Nu), v ∈ L(Nv) with v = sinv(u) iff
L(Nv) ∩ L(sinv(Nu)) 6= ∅.

The analogue of the free reduction defined on automata is the following definition.

I Definition 5.7. A free automata reduction on a test N1 to Nn is a sequence of operations

(FRA1) Ni, Nj 7→free ε, if L(Nj) ∩ L(sinv(Ni)) 6= ∅.
(FRA2) Ni, Nj 7→free Nj , Ni, if O(Ni) I O(Nj).

Since we quantify over all tests, free automata reductions are complete as follows.

I Lemma 5.8. There is a test N1, . . . , Nn and computations u1 ∈ L(N1) to un ∈ L(Nn) that
freely reduce to 1M iff there is a test N1, . . . , Nn that admits a free automata reduction to ε.

Together, Lemma 5.4 and Lemma 5.8 yield a decision procedure for (BCSREACH). We guess
a suitable test and for this test a suitable free automata reduction. The restrictions, the
saturation, the automata conversion, and the independence and disjointness tests require time
polynomial in |A|+ k. Moreover, the free automata reduction contains polynomially-many
(in k) steps. Together, this yields membership in NP and proves Theorem 3.3.

6 Complexity for Fixed Graphs

We have seen that reachability under bounded context switching can always be decided in
NP, even if the graph describing the storage mechanism is part of the input. In this section,
we study how the complexity of the problem depends on the storage mechanism, i.e. the
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graph. We fix the graph G and consider the problem BCSREACH(G). We will see that for
some graphs, the complexity is lower than NP: We exhibit a class of graphs G for which
BCSREACH(G) is solvable in polynomial time and we describe those graphs for which the
problem is NL-complete. Of course, for any graph G, the problem BCSREACH(G) is NL-hard,
because reachability in directed graphs is. In some cases, we also have an NL upper bound.

A loop-free graph is a clique if any two distinct vertices are adjacent. By G− we denote
the graph obtained from G by removing all self-loops. If G− is a clique, then valence systems
over G are systems with access to a fixed number of independent counters, some of which
are blind and some of which are partially blind.

I Theorem 6.1. If G− is a clique, then BCSREACH(G) is NL-complete. Otherwise,
BCSREACH(G) is P-hard.

In some cases, BCSREACH is P-complete. A loop-free graph is a transitive forest if it
is obtained from the empty graph using disjoint union and adding a universal vertex. A
universal vertex is a vertex that is adjacent to all other vertices. Adding one means that we
take a graph G = (V, I) and add a new vertex v /∈ V and make it adjacent to every vertex in
G. Hence, we obtain (V ∪ {v}, I ∪ {{u, v} | u ∈ V }).

I Theorem 6.2. If G− is a transitive forest, then BCSREACH(G) is in P.

In the area of graph monoids, transitive forests are an important subclass. For many decision
problems, they characterize those graphs for which the problem becomes decidable [57, 43]
or tractable [44]. Intuitively, the storage mechanisms represented by graphs G where G− is
a transitive forest are those obtained by building stacks and adding counters, see [57, 56].

If G = (V, I) is a graph, then H is an induced subgraph of G if H is isomorphic to a graph
(V ′, I ′), where V ′ ⊆ V and I ′ = {e ∈ I | e ⊆ V ′}. See Fig. 2 for the graphs C4 and P4.

I Theorem 6.3. If C4 is an induced subgraph of G−, then BCSREACH(G) is NP-complete.

It is an old combinatorial result that a simple graph is a transitive forest if and only if it
does not contain the two graphs P4 and C4 as induced subgraphs [53]. Hence, if one could
also show that BCSREACH(G) is NP-hard when G− = P4, then Theorem 6.2 would cover
all cases with polynomial complexity (unless P = NP). However, we currently do not know
whether BCSREACH(P4) is NP-hard.

Proof Sketches. The rest of this section is devoted to sketching the proofs of Theorems 6.1,
6.2, and 6.3. The first step is a reformulation of the problem BCSREACH(G) if G is obtained
from two disjoint graphs G0 and G1 by drawing edges everywhere between G0 and G1.
Suppose Gi = (Vi, Ii) is a graph for i = 0, 1 such that V0 ∩ V1 = ∅. Then the graph G0 ×G1
is defined as (V, I), where V = V0 ∪ V1 and I = I0 ∪ I1 ∪ {{v0, v1} | v0 ∈ V0, v1 ∈ V1}.

The reformulation also involves valence automata, which can read input. Let G = (V, I)
be a graph and let O = {o+, o− | o ∈ V }. A valence automaton over G is a tuple
A = (Q,Σ, q0, E, qf ), where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is its initial

(a) The graph P4. (b) The graph C4.

Figure 2. The graphs P4 and C4.
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state, E ⊆ Q × (Σ ∪ {ε}) × (O ∪ {ε}) × Q is its set of transitions, and qf ∈ Q is its final
state. A configuration is a tuple (q, u, v), where q ∈ Q, u ∈ Σ∗, and v ∈ O∗, where v is
right-invertible. Intuitively, a transition (q, s, w, q′) changes the state from q to q′, reads the
input s, and puts w into the storage. We write (q, u, v)→ (q′, u′, v′) if there is a transition
(q, s, w, q′) such that u′ = us and v′ = vw. For any k ∈ N, the language accepted by A with
at most k context switches is denoted Lk(A) and defined as the set of all u ∈ σ∗ such that
from (q0, ε, ε), we can reach (qf , u, w) for some w ∈ O∗ with [w]M = 1M and cs(w) ≤ k. The
following problem will be used to reformulate BCSREACH(G×H).

Intersection under bounded context switching (BCSINT(G,H))
Given: Alphabet Σ, valence automata A,B over graphs G,H, resp.,

with input alphabet Σ, and bounds k, `,m in unary.
Decide: Is the intersection Lk(A) ∩ L`(B) ∩ Σ≤m non-empty?

We are now ready to state the reformulation, which is not difficult to prove.

I Proposition 6.4. If G = G0 × G1, then BCSREACH(G) is logspace-interreducible with
BCSINT(G0, G1).

We can use Proposition 6.4 to show that adding a universal vertex does not change the
complexity.

I Proposition 6.5. If G has a universal vertex v, then BCSREACH(G) reduces to
BCSREACH(G \ v) in logspace.

This can be deduced from Proposition 6.4 as follows. If v is a universal vertex, then
G = (G \ v) ×H, where H is a one-vertex graph. In this situation, a valence automaton
over H is equivalent to a one-counter automaton (OCA). It is folklore that an n-state OCA
accepts a word of length m if and only if it does so with counter values at most O((mn)2) [22].
We can thus compute in logspace a finite automaton for the language R = L`(B) ∩ Σ≤m.
This means, our instance of BCSINT(G \ v,H) reduces to emptiness of Lk(A) ∩ R. Using
the automaton for R, this is easily turned into an instance of BCSREACH(G \ v). Note
that Proposition 6.5 yields the upper bound of Theorem 6.1. The P-hardness follows from
P-hardness of reachability in pushdown automata.

The P upper bound in Theorem 6.2 follows from Proposition 6.5 and the following.

I Proposition 6.6. If BCSREACH(Gi) is in P for i = 0, 1, then BCSREACH(G0 ∪· G1) is in
P as well.

Proposition 6.6 is shown using a saturation procedure similar to the one in Section 5. In the
latter, we shortcut paths that read two (complementary) instructions. Here, in contrast, we
find states p, q between which there is an arbitrarily long path that reads instructions w over
one graph Gi for i = 0, 1 such that [w]M = 1M and cs(w) ≤ k. Then, we add an ε-transition
between p and q.

Finally, let us comment on the NP-hardness in Theorem 6.3. If G = C4, this is the
well-known NP-hardness of reachability under bounded context switching. If G contains
self-loops, we employ Proposition 6.4: If G− = C4, then G = G0 × G1 for some graphs
where each Gi contains two non-adjacent vertices. In this case, it is known that that valence
automata over Gi accept the same languages as those over G−i [57, 56]. Therefore, the
formulation in terms of BCSINT(G0, G1) allows us to conclude hardness.
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7 Conclusion

We have shown that for every storage represented by a graph monoid, reachability under
bounded context switches (BCSREACH) is decidable in NP. To this end, we show that
after some preprocessing in a saturation procedure, any computation with bounded context
switches decomposes into quadratically many blocks. These blocks then cancel and commute
with each other so as to reduce to the identity element. Thus, one can guess a decomposition
into blocks and verify the cancellation and commutation relations among them.

For the subclass of graph monoids whose underlying simple graph is a transitive forest, we
have provided a polynomial-time algorithm (Theorem 6.2). However, we leave open whether
there are other graph monoids for which the problem is in P.

One has NP-hardness in the case that the underlying simple graph contains C4 as an
induced subgraph, which corresponds to the classical case of bounded context switching in
concurrent recursive programs. Since transitive forests are precisely those simple graphs
that contain neither C4 nor P4 as induced subgraphs [53], showing NP-hardness for P4
would imply that Theorem 6.2 captures all graphs with polynomial-time algorithms (unless
P = NP). Unfortunately, the known hardness techniques for problems involving graph groups
or Mazurkiewicz traces over P4 [1, 43, 44, 57] do not seem to apply.

Moreover, there is a variety of under-approximations for concurrent recursive programs [36,
11, 18, 41, 24, 12, 51]. It appears to be a promising direction for future research to study
generalizations of these under-approximations to valence systems.
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A Proofs for Section 4

I Lemma 4.5. For a word w, we have [w]M = 1M iff w admits a reduction.

Proof. Clearly, w 7→∗red ε implies [w]M = 1M. We prove the converse using another rewriting
relation that has been studied before [56, 54]. Let u ` v if either (i) u = s.o+.o−.t and
v = s.t for some s, t ∈ O∗ and o ∈ O or (ii) u = s.a.b.t and v = s.b.a.t for some s, t ∈ O∗
and a ∈ o1

±, b ∈ o2
± for some o1 I o2. Let `∗ be the reflexive transitive closure of `. It was

shown in [56, 54] that [w]M = 1M if and only if w `∗ ε.
Let us show by induction on |w| that w `∗ ε implies w 7→∗red ε. Consider a sequence of

steps witnessing w `∗ ε. Let us call a step undesirable if we cannot (directly) match it with
7→red . This means, a step u ` v where u = s.a.b.t and v = s.b.a.t with {a, b} = {o+, o−}.

If the sequence does not apply an undesirable step, it is already a reduction for
w. If such a step does occur, suppose w′ is the first word where we apply one: We
have w 7→∗red w′ = s.a.b.t ` s.b.a.t `∗ ε. Observe that then [a.b]M = 1M and hence
[s.t]M = [s.a.b.t]M = 1M. Since |s.t| < |w′| 6 |w|, induction yields s.t 7→∗red ε and thus
w 7→∗red s.a.b.t 7→red s.t 7→∗red ε. J

I Lemma 4.7. Every context has a unique factorization into blocks.

Proof. It suffices to show that each position in a context belongs to exactly one block.
Since π reduces w to ε, for each x ∈ {1, . . . , n}, there is exactly one y ∈ {1, . . . , n}, x 6= y

such that Rule (R1) or Rule (R2) is applied either to w′.w[x].w[y].w′′ or to w′.w[y].w[x].w′′.
Consequently, each w[x] belongs to at least one block.

We also need to show that no position in w belongs to more than one block. Towards a
contradiction, assume there are blocks u, v that overlap, i.e. u = r.s, v = s.t. Then there
is some context wi of w that we may write as wi = w′i.r.s.t.w

′′
i . As u is a block, there is

another context wj such that u cancels with an infix of wj , i.e. wj = w′j .u
′.w′′j with u Rπ u′.

By the definition of Rπ, we have u′ = s′.r′ such that s Rπ s′ and r Rπ r′.
Similarly, there is a context wj̄ containing infix v′ which cancels v. As s′ is the unique

infix of w such that the operations in s cancel out with s′, we need to have j̄ = j, and we
can write wj = w′j .t

′.s′.r′.w′′j where s′, r′ are as before and t Rπ t′. Consequently, we have
r.s.t Rπ t

′.s′.r′ which contradicts the maximality of the blocks u and v. J

I Lemma 4.9. 6w has a minimal nesting.

Proof. We argue that 6w is transitive and antisymmetric. As the domain of 6w is finite,
this is sufficient to guarantee that a minimal nesting exists: We may start with an arbitrary
pair s1 Rπ s2 and iteratively pick smaller pairs as long as possible.

For transitivity, note that (s1 Rπ s2) 6w (t1 Rπ t2) and (t1 Rπ t2) 6w (r1 Rπ r2)
implies that we can write w = w(1).r1.w

(2).t1.w
(3).s1.w

(4).s2.w
(5).t2.w

(6).r2.w
(7) , proving

(s1 Rπ s2) 6w (r1 Rπ r2).
For antisymmetry, assume (s1 Rπ s2) 6w (t1 Rπ t2) and (s1 Rπ s2) 6w (t1 Rπ t2).

This implies that we can write w = w(1).s1.w
(2).t1.w

(3).s1.w
(4).s2.w

(5).t2.w
(6).s1.w

(7) , a
contradiction to the fact that s1 has a unique occurrence in w. J

I Lemma 4.10. If s1 Rπ s2, then [s1.s2]M = 1M.

Proof. We proceed by induction on |s1| = |s2|. In the base case, s1 = a and s2 = b are
single operations. If a = o+, b = o− for some o, the statement obviously holds. Otherwise,
we have a = o−, b = o+. By definition of 7→red, this implies that o I o holds, and
[o−.o+]M = [o+.o−]M = 1M follows as desired.
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Assume that s1 = u.t, s2 = r.v such that u Rπ v, t Rπ r. We may apply induction and
use that ∼= is a congruence, obtaining [s1.s2]M = [u.t.r.v]M = [u.v]M = 1M . J

I Lemma 4.13. The relation Rπ never relates blocks from the same context.

Proof. We show that a context cannot contain two operations that cancel out. As two blocks
that cancel out would contain such operations, this is sufficient.

Towards a contradiction, assume a Rπ b where a, b are contained in the same context wi,
i.e. we have wi = wi1 .a.wi2 .b.wi3 . We have a = o+, b = o−, or a = o−, b = o+ and o I o. If
wi2 = ε, we obtain a contradiction to the assumption that wi is irreducible in both cases.
If wi2 is a sequence of operations from o±, we also obtain a contradiction to irreducibility.
Otherwise wi contains some operation c ∈ o2

± for o2 6= o. Since wi is a context, o2 and o are
not independent. Since a should cancel with b, π needs to swap one of them over c, or it
needs to swap the inverse of c (which is also in o2

±) over one of them. As o2 and o are not
independent, this is not possible. We obtain that a cannot cancel with b, a contradiction. J

B Proofs for Section 5

I Lemma 5.5. If u, v ∈ O∗ are irreducible, dependent with [u]M · [v]M = 1M, then v = sinv(u).

Proof. We show that for dependent and irreducible u, v, [u]M · [v]M = 1M implies v = sinv(u).
We proceed by induction on the length of u. In the base case, we have u = ε, which

implies [v]M = [ε]M. As v is irreducible and dependent, we have v = ε as required. Here, we
have used that any word that reduces to 1M needs to have a first reduction step in which
canceling occurs, which can only exist if the word is non-irreducible.

Assume that u = u′.a. We claim that we can write v = b.v′, where b = sinv(a) and
v′ = sinv(u′), which implies v = sinv(u). As we have [u]M · [v]M = 1M, v contains an operation
canceling a. If this operation is not the very first letter in v, we obtain a contradiction.

Let a ∈ o1
± and assume that the first operation in v is in o2

± for o1 6= o2. Since v is
dependent, the first operation cannot commute with the inverse of a, a contradiction to
[u]M · [v]M = 1M. Hence, v starts with a prefix using operations in o2

± and containing the
operation that cancels a.

If o1 I o1 does not hold, then we need to have a = o1
+. If a = o1

−, we would have
that v is not right-invertible (since it is irreducible), a contradiction to the assumption
[u]M · [v]M = 1M. Having a = o1

+ implies that the first operation b in v is o1
−, which is

indeed the syntactic inverse of a.
If o1 I o1 holds, then we have to consider both cases a = o1

− and a = o1
+. In the first

case, we claim that b = o1
+ has to hold. If v starts with a sequence of o1

−, and then has an
occurrence of o1

+, we get a contradiction to the irreducibility of v. Similarly, in the second
case a = o1

+, b = o1
− has to hold.

Altogether, we have v = b.v′ with b = sinv(a). We have

1M = [u.v]M = [u′.a.b.v′]M = [u′]M · [a.b]M · [v′]M = [u′]M · 1M · [v′]M = [u′.v′]M .

Since u′ and v′ are still dependent and irreducible, we obtain v′ = sinv(u′) by induction. We
conclude sinv(u) = sinv(u′.a) = sinv(a).sinv(u′) = b.v′ = v as desired. J

C Proofs for Section 6

We begin with the proof of Proposition 6.4, which consists of three lemmas.
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I Lemma C.1. If G = G0×G1, then BCSREACH(G) reduces to BCSINT(G0, G1) in logspace.

Proof. Suppose S = (Q,→) is a valence system over the graph G = G0 × G1 and we
are given the context switching bound k and states qinit and qfin. Let Gi = (Vi, Ei) and
Oi = {o+, o− | o ∈ Vi} for i = 0, 1. Let Σ = Q× [0, k]×Q. Let q0 = qinit, pn+1 = qfin.

The idea is to construct A and B so that a word

(p1, s1, q1)(p2, s2, q2) · · · (pn, sn, qn)

in the intersection Lk(A) ∩ Lk(B) ∩ Σ≤k witnesses a computation

q0
u0−→ p1

v1−→ q1
u1−→ · · · un−1−−−→ pn

vn−→ qn
un−−→ pn+1

in S where u0, un ∈ O∗0 and ui ∈ O+
0 for i ∈ [1, n − 1] and vi ∈ O+

1 for i ∈ [1, n] and
cs(vi) = si for i ∈ [1, n] and cs(u0v1u1 · · · vnun) ≤ k. One checks easily that in this case, we
have

cs(u0v1u1 · · · vnun) = cs(u0) +
n∑
i=1

(cs(vi) + cs(ui) + 2) = cs(u0) +
n∑
i=1

(si + cs(ui) + 2).

Note that if we can construct A and B in logspace so that a word in the intersection
Lk(A) ∩ Lk(B) ∩ Σ≤k exists if and only if there is a computation as above, then we have
indeed a logspace reduction from BCSREACH(G) to BCSINT(G0, G1).

We accomplish this by constructing in logspace valence automata A and B over G0 and
G1, respectively, for which

Lk(A) =
{

(p1, s1, q1)(p2, s2, q2) · · · (pn, sn, qn) | for each i ∈ [0, n], we have qi
ui−→ pi+1

with u0, un ∈ O∗0 , u1, . . . , un−1 ∈ O+
0 and cs(u0) +

n∑
i=1

(si + cs(ui) + 2) ≤ k
}

(1)

and

Lk(B) =
{

(p1, s1, q1)(p2, s2, q2) · · · (pn, sn, qn) | for each i ∈ [1, n], we have pi
vi−→ qi

for some vi ∈ O+
1 with cs(vi) = si and cs(v1 · · · vn) ≤ k

}
. (2)

It is not difficult to construct A and B. The state set of A is QA = Q× 2O0 × [−1, k]. In
its right-most component, it counts the number of context switches observed during the
run including the ones contributed by edges reading letters in Σ. In order to update this
counter, it used its middle component. Here, it keeps track of the set of operations seen
in the current context. Note that the state set of A has polynomial size because we treat
the graph G as constant. The automaton A has edges for simulating runs ui in S that are
labeled ε. Moreover, for each (p, s, q) ∈ Σ, A has an edge that changes the left component
from p to q and adds s to the counter.

The state set of B is {∗} ∪Q×Q× 2O1 × [0, k]. Initially, B is in the state ∗. For each
(p, s, q) ∈ Σ and p x−→ p′ for x ∈ O1, B has an edge labeled (p, s, q) from ∗ to (p′, q, {x}, s).
In states from Q × Q × 2O1 × [0, k], B operates analogous to A, except that the second
Q-component remains constant and the right-most component counts downward. On these
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edges, B reads no input. In addition, from a state (q, q, T, 0) with T ⊆ O1, B can go back to
the state ∗, which is also its final state.

With A and B set up this way, it is clear that (1) and (2) are satisfied. Thus we have indeed
that qinit can reach qfin with at most k context switches if and only if Lk(A)∩Lk(B)∩Σ≤k 6= ∅.

J

In the rest of this section, we will also use the notation L(A) =
⋃
k≥0 Lk(A) for valence

automata A.

I Lemma C.2. Given a valence automaton A and a unary bound k, one can construct in
logspace a valence automaton A′ with L(A′) = Lk(A′) = Lk(A).

Proof. Let A = (Q,Σ, q0, E, qf ). Then, A′ has states {∗} ∪ Q × 2O × [0, k]. It simulates
computations of A. In the third component it counts the number of context switches it sees
on the storage. In order to maintain this counter, it stores in the second component the set
of operations in O occurring in the current context. The initial state of A′ is (q0, ∅, 0) and
the final state is ∗. In order to reach the final state, A′ has a transition that reads input ε
and adds ε to the storage from every state (qf , U, `) to ∗. J

I Lemma C.3. If G = G0×G1, then BCSINT(G0, G1) reduces to BCSREACH(G) in logspace.

Proof. Suppose we are given an alphabet Σ, valence automata A = (QA,Σ, q0,A, EA, qf,A)
and B = (QB ,Σ, q0,B , EB , qf,B) over G0 and G1, respectively, such that L(A),L(B) ⊆ Σ∗
and unary bounds k, `,m ∈ N. According to Lemma C.2, we may assume that L(A) = Lk(A)
and L(B) = L`(B). Let us call a sequence of transitions in a valence automaton an a-path if
it reads a ∈ Σ from the input. Hence, it consists of some ε-transitions, an a-transition, and
again some ε-transitions.

We construct a valence automaton C over G as follows. The state set of C is a product
of several components, among them the state sets QA and QB. When C reads a letter
a ∈ Σ, it first simulates an a-path of A and then an a-path of B. Moreover, it has a counter
that counts the number of read input symbols and makes sure that at most m of them are
read. It is obvious how to set up the state set and transitions of C appropriately so that
for some states qinit and qfin in C, we have: qinit

w−→ qfin with [w]M = 1M if and only if
L(A) ∩ L(B) ∩ Σ≤m 6= ∅. Moreover, since we know that L(A) = Lk(A) and L(B) = L`(B),
we have that L(A) ∩ L(B) ∩ Σ≤m 6= ∅ implies Lk(A) ∩ L`(B) ∩ Σ≤m 6= ∅ and thus our
construction yields qinit

w−→ qfin with [w]M = 1M and cs(w) ≤ k + `+ 2m. J

Proposition 6.4 now follows from Lemmas C.1 and C.3.

I Proposition 6.4. If G = G0 × G1, then BCSREACH(G) is logspace-interreducible with
BCSINT(G0, G1).

Proof. Lemmas C.1 and C.3 show the two reductions. J

We are now ready to prove Proposition 6.5.

I Proposition 6.5. If G has a universal vertex v, then BCSREACH(G) reduces to
BCSREACH(G \ v) in logspace.

Proof. Since v is universal, we may apply Lemma C.1 in the case where G0 = G \ v and G1
is the subgraph of G induced by v. Hence, it suffices to show that BCSINT(G0, G1) reduces
to BCSREACH(G \ v). Therefore, suppose we are given an alphabet Σ, valence automata A
and B over G0 and G1, respectively, and bounds k, `,m.
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The rest of our proof employs a classical infinite-state model. A one-counter automaton is
a tuple C = (Q,Γ, q0, E, qf ), where Q is a finite set of states, Γ is an alphabet, q0 ∈ Q is its
initial state, qf ∈ Q is its final state, and E ⊆ Q× (Γ∪ {ε})×{−1, 1, 0,= 0}×Q is its set of
transitions. A configuration is a pair (q, n) ∈ Q× N. The transition relation (p,m) w−→ (q, n)
between configurations (p,m) and (q, n) is defined as expected for w ∈ Γ∗. Here, −1, 1, 0,
= 0 stand for decrement, increment, no change, and zero test, respectively. A word w ∈ Γ∗ is
accepted by the automaton if (q0, 0) w−→ (qf , n) for some L(C).

We construct in two steps a one-counter automaton C with L(C) = L`(B). First, we use
Lemma C.2 to construct a valence automaton B′ with L(B′) = L`(B). Now we can construct
C. Since G1 contains only one vertex, it is easy to construct in logspace a one-counter
automaton C with L(C) = L(B′): If v has a loop, then a valence automaton over G1 is an
automaton with access to a counter that assumes values in Z and has an increment and a
decrement operation. If v has no loop, then a valence automaton over G1 is an automaton
with a counter that assumes values in N and, again, has an increment and a decrement
operation. In each case, we can easily simulate the monoid using a counter that assumes
only values in N and has zero tests available.

Thus, we have reduced our problem to the question of whether Lk(A) ∩L(C) ∩Σ≤m 6= ∅.
It is folklore that if a one-counter automaton with n states accepts any word, then it does so
in a computation during which the counter values are bounded by O(n2) (see [22] and the
references therein). This implies that if C has n states and accepts a word in Σ≤m, then it
does so in some computation with counter values at most a(mn)2 + b for some constants
a, b ∈ N.

Let us constuct a finite automaton D that simulates all computations of C where the
counter does not exceed a(mn)2 + b and which read an input word of length ≤ m. Then, D
has (a(mn)2 + b)nm states and can clearly be constructed in logspace. Moreover, we have
L(D) = L(C) ∩ Σ≤m and thus Lk(A) ∩ L`(B) ∩ Σ≤m 6= ∅ if and only if Lk(A) ∩ L(D) 6= ∅.
Using a simple product construction, we can now obtain a valence automaton A′ from A

and D so that Lk(A′) = Lk(A) ∩ L(D). Finally, checking emptiness of Lk(A′) is an instance
of BCSREACH(G0). J

Our next goal is to prove Proposition 6.6. For the proof, it will be convenient to use
a reformulation of the problem BCSREACH. A valence system S = (Q,→) is said to be
k-bounded if p w−→ q for states p, q ∈ Q implies cs(w) ≤ k.

BCS reachability with promise (BCSRP(G))
Given: Bound k in unary, a k-bounded valence system S, states qinit, qfin.
Decide: Is there a run from (qinit , ε) to (qfin, w) so that [w]M = 1M?

Of course, the problem BCSRP(G) is very similar to BCSREACH(G). What makes it useful
is that in order to solve BCSRP(G) we need not worry about discovering paths with too
many context switches: We may assume that all paths are guaranteed to contain at most
k. In particular, our procedure will find paths in a valence system over G = G0 ∪· G1 by
repeatedly finding paths in valence systems over G0 or G1. The formulation in terms of
BCSRP(G) relieves us from keeping track of how many context switches we have made in
the paths for the Gi when composing them to paths over G.

I Lemma C.4. For each graph G, the problems BCSREACH(G) and BCSRP(G) are inter-
reducible via logspace reductions.
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Proof. Of course, BCSRP(G) reduces trivially to BCSREACH(G). Conversely, suppose S
is a valence system over G and we want to decide whether there is a run from (qinit, ε) to
(qfin, w) so that [w]M = 1M and cs(w) ≤ k.

We turn S into a valence system S′ that keeps track of the number of context switches
in its states and is therefore k-bounded. If G = (V, I), O = {o+, o− | o ∈ V }, S = (Q,→),
then S′ has states Q′ = {∗} ∪ Q × 2O × [0, k]. In its middle component, it maintains the
list of operations occurring in the current context. This is used to update the right-most
component, which counts the number of context switches S′ has seen during the computation.
Hence, we have transitions:

(p, U, `) x−→ (q, U ∪ {x}, `) for each p x−→ q in S where U ∪ {x} is dependent
and ` ∈ [0, k]

(p, U, `) x−→ (q, {x}, `+ 1) for each p x−→ q in S where U ∪ {x} is not dependent
and ` ∈ [0, k − 1]

(p, U, `) ε−→ (q, U, `) for each p ε−→ q in S

Now reachability of (qfin, w) from (qinit, ε) with [w]M = 1M and cs(w) ≤ k is equivalent to
reachability of some ((qfin, U, `), w) from ((qinit, ∅, 0), ε) with [w]M = 1M. Since we want to
provide a single final state in our reduction, we also add transitions

(qfin, U, `)
ε−→ ∗ for each U ⊆ O and ` ∈ [0, k]

Then S′ is clearly k-bounded. As initial state, we take q′init = (qinit, ∅, 0) and as a final state,
we take q′fin = ∗. Then we clearly have a run from (q′init, ε) to (q′fin, w′) with [w′]M = 1M if
and only if there is a run from (qinit, ε) to (qfin, w) with [w]M = 1M and cs(w) ≤ k. J

We are now ready to prove Proposition 6.6.

I Proposition 6.6. If BCSREACH(Gi) is in P for i = 0, 1, then BCSREACH(G0 ∪· G1) is in
P as well.

Proof. According to Lemma C.4, it suffices to show that if BCSRP(G0) and BCSRP(G1) are
in P, then BCSRP(G0 ∪· G1) is in P. To this end, we use a saturation algorithm.

Suppose we are given a k-bounded valence system S = (Q,→) over G = G0 ∪· G1. Let
Gi = (Vi, Ii) and Oi = {o+, o− | o ∈ V } for i = 0, 1. We add edges labeled ε according
to the following rule: If from (p, ε), one can reach (q, w) with [w]M = 1M and w ∈ O∗i for
some i ∈ {0, 1}, then we add an edge p ε−→ q. Note that we can decide in polynomial time
whether this is the case: Restricting S to edges with labels in O∗i yields a valence system
hat inherits k-boundedness from S; thus, we answer an instance of BCSRP(Gi). Moreover,
adding an ε-transition preserves k-boundedness as well. Finally, since we are only adding
transitions labeled ε, this procedure terminates after adding at most |Q|2 transitions and
thus in polynomial time. Let S′ = (Q,;) be the resulting valence system.

We claim that qinit
ε; qfin if and only if qinit

w−→ qfin for some w with [w]M = 1M. Here,
the “only if” direction follows easily by induction on the number of steps performed in the
saturation algorithm.

For the converse, we prove by induction on |w| that for any p, q ∈ Q, if p w; q with
[w]M = 1M, then p

ε; q. Suppose we have p w; q with [w]M = 1M.
If |w| = 0, we are done. Moreover, if w ∈ O+

i for some i ∈ {0, 1}, then we have
introduced p ε; q during the saturation. Otherwise, we can decompose w = u1 · · ·un so that
uj ∈ O+

0 ∪ O
+
1 and uj ∈ O+

i iff uj+1 ∈ O+
1−i for j ∈ [1, n].

25



Then it follows from the definition of ∼= that there is some ` ∈ [1, n] with uj ∼= ε:
Otherwise, it follows by induction on the number of applied equivalences (i.e. o±1 .o

±
2
∼= o±2 .o

±
1

for o1Io2 or o+o− ∼= ε), that every word w′ with w ∼= w′ has a decomposition w′ = u′1 · · ·u′n
with u′j ∼= uj for j ∈ [1, n]. Hence, let u` ∼= ε and w = xu`y.

Let p′, q′ be states so that p x; p′
u`; q′

y
; q. Since u` ∼= ε, the saturation procedure has

added the transition p′ ε; q′. Hence, we have p xy
; q with [xy]M = [xu`y]M = [w]M = 1M and

thus by induction p ε; q. J

I Theorem 6.3. If C4 is an induced subgraph of G−, then BCSREACH(G) is NP-complete.

Proof. Since we have shown NP membership for all graphs, it suffices to show NP-hardness
in the case G− = C4. In that case, we have G = G0 × G1, where each Gi consists of two
vertices, which may or may not carry self-loops.

According to Proposition 6.4, it suffices to show that BCSINT(G0, G1) is NP-hard. Con-
sider a 3CNF-SAT instance ϕ =

∧m
j=1 Cj , where each Cj is a clause over the variables

{x1, . . . , xn}. We encode an assignment of the variables by a word w ∈ {0, 1}n and say that
w satisfies Cj (resp. ϕ) if the corresponding assignment satisfies Cj (resp. ϕ).

Since each Gi consists of two non-adjacent vertices, it is known that valence automata
over Gi accept exactly the context-free languages [57, 56]. Moreover, the translation from
PDAs (or context-free grammars) into valence automata over Gi can obviously performed
in logarithmic space. For a word w ∈ {0, 1}∗, let wrev denote its reversal. Consider the
context-free languages

L0 = {w1#w1
rev#w2#w2

rev · · ·wm#wmrev# | for j ∈ [1,m], wj ∈ {0, 1}n satisfies Cj}
L1 = {w0#w1#w1

rev# · · ·wm−1#wm−1
rev#wm# | for j ∈ [0,m], wj ∈ {0, 1}n}

over Σ = {0, 1,#}. On the one hand, we have L0 ∩ L1 ∩ Σ2m(n+1) 6= ∅ if and only if ϕ is
satisfiable. On the other hand, we can construct a PDA for each Li in logarthmic space, and
hence also valence automata Ai over Gi such that L(Ai) = Li for i = 0, 1. Since in Gi, there
are no edges between distinct vertices, every computation has 0 context switches, meaning
L(Ai) = L0(Ai). Thus, ϕ is satisfiable if and only if L0(A0) ∩ L0(A1) ∩ Σ2m(n+1) 6= ∅. J

26


	1 Introduction
	2 Valence Systems over Graph Monoids
	3 Bounded Context Switching
	4 Block Decomposition
	5 Decision Procedure
	6 Complexity for Fixed Graphs
	7 Conclusion
	A Proofs for Section ??
	B Proofs for Section ??
	C Proofs for Section ??

