
Bounded context switching for valence systems

Roland Meyer1, Sebastian Muskalla1, and Georg Zetzsche2

September 4, CONCUR 2018, Beijing

1 TU Braunschweig, Germany
{roland.meyer,s.muskalla}@tu-bs.de

2 IRIF (Université Paris-Diderot, CNRS), France
zetzsche@irif.fr

Result and structure

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP (for all graph monoids).

1. What is bounded context switching (BCS)?

2. What are valence systems over graph monoids?

3. What is BCS for valence systems?

1

Result and structure

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP (for all graph monoids).

1. What is bounded context switching (BCS)?

2. What are valence systems over graph monoids?

3. What is BCS for valence systems?

1

Result and structure

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP (for all graph monoids).

1. What is bounded context switching (BCS)?

2. What are valence systems over graph monoids?

3. What is BCS for valence systems?

1

Result and structure

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP (for all graph monoids).

1. What is bounded context switching (BCS)?

2. What are valence systems over graph monoids?

3. What is BCS for valence systems?

1

1. BCS

The problem

Setting:
Concurrent system, each component modeled as automaton

2

The problem

Setting:
Concurrent system, each component modeled as automaton

Problem:
If components are beyond finite-state,
reachability (safety verification) is difficult

2

The problem

Setting:
Concurrent system, each component modeled as automaton

Problem:
If components are beyond finite-state,
reachability (safety verification) is difficult

Solution:
Consider bounded context switching (BCS)

2

Bounded context switching

Context: Infix of the (sequentialized) computation where a
single thread is active

BCS: Number of contexts switches (#contexts −1) bounded
by a constant

3

Bounded context switching

Context: Infix of the (sequentialized) computation where a
single thread is active

BCS: Number of contexts switches (#contexts −1) bounded
by a constant

3

Bounded context switching

Context: Infix of the (sequentialized) computation where a
single thread is active

BCS: Number of contexts switches (#contexts −1) bounded
by a constant

Reachability under bounded context switching (BCSREACH)
Given: Concurrent system S , number k (in unary)
Decide: Final configuration reachable from initial one in S

by a computation with ⩽ k context switches?

3

Bounded context switching

Reachability under bounded context switching (BCSREACH)
Given: Concurrent system S , number k (in unary)
Decide: Final configuration reachable from initial one in S

by a computation with ⩽ k context switches?

Under-approximation of reachability

Complexity is typically much lower

Useful as bugs usually occur within few context switches
[MQ07,LPSZ08]

4

Bounded context switching

Reachability under bounded context switching (BCSREACH)
Given: Concurrent system S , number k (in unary)
Decide: Final configuration reachable from initial one in S

by a computation with ⩽ k context switches?

Under-approximation of reachability

Complexity is typically much lower

Useful as bugs usually occur within few context switches
[MQ07,LPSZ08]

4

Bounded context switching

Reachability under bounded context switching (BCSREACH)
Given: Concurrent system S , number k (in unary)
Decide: Final configuration reachable from initial one in S

by a computation with ⩽ k context switches?

Under-approximation of reachability

Complexity is typically much lower

Useful as bugs usually occur within few context switches
[MQ07,LPSZ08]

4

Bounded context switching

Reachability under bounded context switching (BCSREACH)
Given: Concurrent system S , number k (in unary)
Decide: Final configuration reachable from initial one in S

by a computation with ⩽ k context switches?

Under-approximation of reachability

Complexity is typically much lower

Useful as bugs usually occur within few context switches
[MQ07,LPSZ08]

4

Example

Example [QR05]:

Concurrent system where each component is a PDS,
communicating via finite control

↰

essentially a MPDS

Reachability is undecidable if #components ⩾ 2

Context: Infix in which only one stack is used

Reachability under BCS is NP-complete

5

Example

Example [QR05]:

Concurrent system where each component is a PDS,
communicating via finite control

↰

essentially a MPDS

Reachability is undecidable if #components ⩾ 2

Context: Infix in which only one stack is used

Reachability under BCS is NP-complete

5

Example

Example [QR05]:

Concurrent system where each component is a PDS,
communicating via finite control

↰

essentially a MPDS

Reachability is undecidable if #components ⩾ 2

Context: Infix in which only one stack is used

Reachability under BCS is NP-complete

5

Example

Example [QR05]:

Concurrent system where each component is a PDS,
communicating via finite control

↰

essentially a MPDS

Reachability is undecidable if #components ⩾ 2

Context: Infix in which only one stack is used

Reachability under BCS is NP-complete

5

Example

Example [QR05]:

Concurrent system where each component is a PDS,
communicating via finite control

↰

essentially a MPDS

Reachability is undecidable if #components ⩾ 2

Context: Infix in which only one stack is used

Reachability under BCS is NP-complete

5

Related work

Similar results for
various types of components,
various types of communication,
various BCS-like restrictions.

6

Related work

Similar results for
various types of components,
various types of communication,
various BCS-like restrictions.

For example:

Queues as storages [LMP08]

Pushdowns with dynamic thread creation [ABQ09]

Pushdowns communicating via queues [HLMS12]

… 6

Related work II

Our goal: General BCS result

7

Related work II

Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
• Can handle queues
• Cannot handle counters
• Applies to settings where the complexity is beyond NP

Reductions to ∃PA-satisfiability [HL12,EGT14]
• Can handle reversal-bounded counters
• Does not allow nested combination of counters and stack

Results incomparable to ours
Our technique provides an algebraic view

7

Related work II

Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
• Can handle queues
• Cannot handle counters
• Applies to settings where the complexity is beyond NP

Reductions to ∃PA-satisfiability [HL12,EGT14]
• Can handle reversal-bounded counters
• Does not allow nested combination of counters and stack

Results incomparable to ours
Our technique provides an algebraic view

7

Related work II

Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
• Can handle queues
• Cannot handle counters
• Applies to settings where the complexity is beyond NP

Reductions to ∃PA-satisfiability [HL12,EGT14]
• Can handle reversal-bounded counters
• Does not allow nested combination of counters and stack

Results incomparable to ours
Our technique provides an algebraic view

7

Related work II

Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
• Can handle queues
• Cannot handle counters
• Applies to settings where the complexity is beyond NP

Reductions to ∃PA-satisfiability [HL12,EGT14]
• Can handle reversal-bounded counters
• Does not allow nested combination of counters and stack

Results incomparable to ours

Our technique provides an algebraic view

7

Related work II

Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
• Can handle queues
• Cannot handle counters
• Applies to settings where the complexity is beyond NP

Reductions to ∃PA-satisfiability [HL12,EGT14]
• Can handle reversal-bounded counters
• Does not allow nested combination of counters and stack

Results incomparable to ours
Our technique provides an algebraic view

7

2. Valence systems

Valence systems

Need a single model that can represent various types of
memory

Introducing valence systems over some monoidM

MonoidM represents the storage of the system

Syntax:

Semantics:

8

Valence systems

Need a single model that can represent various types of
memory

Introducing valence systems over some monoidM

MonoidM represents the storage of the system

Syntax:

Semantics:

8

Valence systems

Need a single model that can represent various types of
memory

Introducing valence systems over some monoidM

MonoidM represents the storage of the system

Syntax:

Semantics:

8

Valence systems

Need a single model that can represent various types of
memory

Introducing valence systems over some monoidM

MonoidM represents the storage of the system

Syntax:
Finite control
Transitions labeled by generators ofM

Semantics:

8

Valence systems

Need a single model that can represent various types of
memory

Introducing valence systems over some monoidM

MonoidM represents the storage of the system

Syntax:
Finite control
Transitions labeled by generators ofM

Semantics:
Configurations (q,m) with q control state, m ∈ M
Transition q m′

−→ q′ leads to (q′,m ·m′) 8

Example

Valence system over Z× Z (with component-wise addition)

qinit qfin

(3,−3)

(−2, 2)

(1,−1)

9

Example

Valence system over Z× Z (with component-wise addition)

qinit qfin

(3,−3)

(−2, 2)

(1,−1)

(essentially an integer 2-VASS)

9

Graph monoids

Want results of the following shape:

Theorem
If monoidM satisfies condition c, then checking property P
for all valence systems overM is in complexity class C.

10

Graph monoids

Want results of the following shape:

Theorem
If monoidM satisfies condition c, then checking property P
for all valence systems overM is in complexity class C.

Best case: Complete for classification for property P

10

Graph monoids

Want results of the following shape:

Theorem
If monoidM satisfies condition c, then checking property P
for all valence systems overM is in complexity class C.

Best case: Complete for classification for property P

For example, want classification of P = reachability

Reachability for valence systems
Given: Valence system A over monoidM
Decide: (qinit, 1M) →∗ (qfinal, 1M)?

10

Graph monoids

Problem: Monoids are too diverse

11

Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse

Finite monoids: Not expressive

Graph monoids

11

Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse

Finite monoids: Not expressive

Graph monoids

11

Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse

Finite monoids: Not expressive

Graph monoids

11

Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse

Finite monoids: Not expressive

Graph monoids

11

Example: Graph monoid

Consider the following undirected graph:

•
a

•
b

Nodes a,b are counters / stack symbols
Operations: a+,b+ (“push a / b”, “increment a / b”)

and a−,b− (“pop a / b”, “decrement a / b”)
Monoid elements: Sequences of operations

modulo the congruence o+.o− ∼= ε

12

Example: Graph monoid

Consider the following undirected graph:

•
a

•
b

Nodes a,b are counters / stack symbols

Operations: a+,b+ (“push a / b”, “increment a / b”)
and a−,b− (“pop a / b”, “decrement a / b”)

Monoid elements: Sequences of operations
modulo the congruence o+.o− ∼= ε

12

Example: Graph monoid

Consider the following undirected graph:

•
a

•
b

Nodes a,b are counters / stack symbols
Operations: a+,b+ (“push a / b”, “increment a / b”)

and a−,b− (“pop a / b”, “decrement a / b”)

Monoid elements: Sequences of operations
modulo the congruence o+.o− ∼= ε

12

Example: Graph monoid

Consider the following undirected graph:

•
a

•
b

Nodes a,b are counters / stack symbols
Operations: a+,b+ (“push a / b”, “increment a / b”)

and a−,b− (“pop a / b”, “decrement a / b”)
Monoid elements: Sequences of operations

modulo the congruence o+.o− ∼= ε

12

Example: Graph monoid

Consider the following undirected graph:

•
a

•
b

Nodes a,b are counters / stack symbols
Operations: a+,b+ (“push a / b”, “increment a / b”)

and a−,b− (“pop a / b”, “decrement a / b”)
Monoid elements: Sequences of operations

modulo the congruence o+.o− ∼= ε

12

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a−

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a−

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a− ∼= a+a−

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Example: PDS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M

a+b+a−b− irreducible

a−a+ irreducible

Valence systems overMG are PDS over stack alphabet
{a,b}

13

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Nodes of G are counters

Operations O consisting of o+,o− for each node o ∈ V

MG = O∗/ ∼=

Monoid elements are represented by sequences of
operations
Monoid operation: Concatenation of representatives

Congruence ∼= satisfies o+.o− ∼= ε for all o

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Nodes of G are counters

Operations O consisting of o+,o− for each node o ∈ V

MG = O∗/ ∼=

Monoid elements are represented by sequences of
operations
Monoid operation: Concatenation of representatives

Congruence ∼= satisfies o+.o− ∼= ε for all o

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Nodes of G are counters

Operations O consisting of o+,o− for each node o ∈ V

MG = O∗/ ∼=

Monoid elements are represented by sequences of
operations
Monoid operation: Concatenation of representatives

Congruence ∼= satisfies o+.o− ∼= ε for all o

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Nodes of G are counters

Operations O consisting of o+,o− for each node o ∈ V

MG = O∗/ ∼=

Monoid elements are represented by sequences of
operations

Monoid operation: Concatenation of representatives

Congruence ∼= satisfies o+.o− ∼= ε for all o

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Nodes of G are counters

Operations O consisting of o+,o− for each node o ∈ V

MG = O∗/ ∼=

Monoid elements are represented by sequences of
operations
Monoid operation: Concatenation of representatives

Congruence ∼= satisfies o+.o− ∼= ε for all o

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Nodes of G are counters

Operations O consisting of o+,o− for each node o ∈ V

MG = O∗/ ∼=

Monoid elements are represented by sequences of
operations
Monoid operation: Concatenation of representatives

Congruence ∼= satisfies o+.o− ∼= ε for all o

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Congruence ∼= satisfies o+.o− ∼= ε for all o

Edge relation I called independence relation

Intuition:

If o I u, then o and u belong to independents part of the
storage
Congruence should identify computations that order
independent operations differently

If o I u, then o± and u± commute: o±.u± ∼= u±.o±

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Congruence ∼= satisfies o+.o− ∼= ε for all o

Edge relation I called independence relation

Intuition:

If o I u, then o and u belong to independents part of the
storage
Congruence should identify computations that order
independent operations differently

If o I u, then o± and u± commute: o±.u± ∼= u±.o±

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Congruence ∼= satisfies o+.o− ∼= ε for all o

Edge relation I called independence relation

Intuition:

If o I u, then o and u belong to independents part of the
storage
Congruence should identify computations that order
independent operations differently

If o I u, then o± and u± commute: o±.u± ∼= u±.o±

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Congruence ∼= satisfies o+.o− ∼= ε for all o

Edge relation I called independence relation

Intuition:
If o I u, then o and u belong to independents part of the
storage

Congruence should identify computations that order
independent operations differently

If o I u, then o± and u± commute: o±.u± ∼= u±.o±

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Congruence ∼= satisfies o+.o− ∼= ε for all o

Edge relation I called independence relation

Intuition:
If o I u, then o and u belong to independents part of the
storage
Congruence should identify computations that order
independent operations differently

If o I u, then o± and u± commute: o±.u± ∼= u±.o±

14

Graph monoids

Graph monoidMG given by undirected graph G = (V, I)

Congruence ∼= satisfies o+.o− ∼= ε for all o

Edge relation I called independence relation

Intuition:
If o I u, then o and u belong to independents part of the
storage
Congruence should identify computations that order
independent operations differently

If o I u, then o± and u± commute: o±.u± ∼= u±.o±

14

Example: VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± where {u,o} = {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ still irreducible

Valence systems overMG are 2-VASS

15

Example: VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± where {u,o} = {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ still irreducible

Valence systems overMG are 2-VASS

15

Example: VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± where {u,o} = {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ still irreducible

Valence systems overMG are 2-VASS

15

Example: VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± where {u,o} = {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ still irreducible

Valence systems overMG are 2-VASS

15

Example: VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± where {u,o} = {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ still irreducible

Valence systems overMG are 2-VASS

15

Example: integer VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± ∀u,o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ ∼= a+a− ∼= ε

Valence systems overMG are integer 2-VASS

16

Example: integer VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± ∀u,o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ ∼= a+a− ∼= ε

Valence systems overMG are integer 2-VASS

16

Example: integer VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± ∀u,o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ ∼= a+a− ∼= ε

Valence systems overMG are integer 2-VASS

16

Example: integer VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± ∀u,o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ ∼= a+a− ∼= ε

Valence systems overMG are integer 2-VASS

16

Example: integer VASS

•
a

•
b

MG =
{
a+,b+,a−,b−

}∗
/ ∼=

o+.o− ∼= ε ∀o ∈ {a,b}

o±.u± ∼= u±.o± ∀u,o ∈ {a,b}

a+b+b−a− ∼= a+a− ∼= ε = 1M still valid

a+b+a−b− ∼= a+b+b−a− ∼= ε

a−a+ ∼= a+a− ∼= ε

Valence systems overMG are integer 2-VASS

16

Example: MPDS

•aℓ

•bℓ

•ar

•br

17

Example: MPDS

•aℓ

•bℓ

•ar

•br

Any m ∈ {aℓ+,aℓ−, . . .}∗ can be written as

m ∼= m↾ℓ .m↾r

such that m ∼= ε iff m↾ℓ
∼= ε and m↾r ∼= ε

17

Example: MPDS

•aℓ

•bℓ

•ar

•br

Any m ∈ {aℓ+,aℓ−, . . .}∗ can be written as

m ∼= m↾ℓ .m↾r

such that m ∼= ε iff m↾ℓ
∼= ε and m↾r ∼= ε

Valence systems overMG are 2-PDS (with a binary stack
alphabet for each stack)

17

Graph monoids

Graph monoids can model:

Natural (partially blind) counters
Integer (blind) counters
Combinations of these
Stacks of these

18

Graph monoids

Graph monoids can model:
Natural (partially blind) counters
Integer (blind) counters

Combinations of these
Stacks of these

18

Graph monoids

Graph monoids can model:
Natural (partially blind) counters
Integer (blind) counters
Combinations of these

Stacks of these

18

Graph monoids

Graph monoids can model:
Natural (partially blind) counters
Integer (blind) counters
Combinations of these
Stacks of these

18

Graph monoids

Graph monoids can model:
Natural (partially blind) counters
Integer (blind) counters
Combinations of these
Stacks of these

Graph monoids cannot model:

Queues
Higher-order stacks

18

Graph monoids

Graph monoids can model:
Natural (partially blind) counters
Integer (blind) counters
Combinations of these
Stacks of these

Graph monoids cannot model:
Queues

Higher-order stacks

18

Graph monoids

Graph monoids can model:
Natural (partially blind) counters
Integer (blind) counters
Combinations of these
Stacks of these

Graph monoids cannot model:
Queues
Higher-order stacks

18

Results

Characterization results for valence systems/automata:
reachability [Z15]
regularity [Z11]
context-freeness [BZ13]
semilinearity of the Parikh image [BZ13]
...

19

3. BCS for valence systems

BCS for valence systems

How to define BCS for valence systems over graph monoids?

20

BCS for valence systems

How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

The system is modeled as a single valence system

The monoid models the total storage of all components

The components share a control state
(communication between components)

20

BCS for valence systems

How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

The system is modeled as a single valence system

The monoid models the total storage of all components

The components share a control state
(communication between components)

20

BCS for valence systems

How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

The system is modeled as a single valence system

The monoid models the total storage of all components

The components share a control state
(communication between components)

20

BCS for valence systems

How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

The system is modeled as a single valence system

The monoid models the total storage of all components

The components share a control state
(communication between components)

20

BCS for valence systems

How to define BCS for valence systems over graph monoids?

21

BCS for valence systems

How to define BCS for valence systems over graph monoids?

A slight modification

21

BCS for valence systems

How to define BCS for valence systems over graph monoids?

A slight modification

Consider configurations of the shape (q,m) where m is a
sequence of operations

21

BCS for valence systems

How to define BCS for valence systems over graph monoids?

A slight modification

Consider configurations of the shape (q,m) where m is a
sequence of operations

We do not store the monoid element, but its syntactic
representation

21

BCS for valence systems

How to define BCS for valence systems over graph monoids?

A slight modification

Consider configurations of the shape (q,m) where m is a
sequence of operations

We do not store the monoid element, but its syntactic
representation

Crucial as our notion of context is not invariant under
congruence

21

Contexts

•aℓ

•bℓ

•ar

•br

22

Contexts

•aℓ

•bℓ

•ar

•br

Nodes belonging to independent parts of the storage are
connected by an edge

22

Contexts

•aℓ

•bℓ

•ar

•br

Nodes belonging to independent parts of the storage are
connected by an edge

Intuitively:
m = . . .o±.u± . . .

with o I u, then this constitutes a context switch

22

Contexts

•aℓ

•bℓ

•ar

•br

Nodes belonging to independent parts of the storage are
connected by an edge

Intuitively:
m = . . .o±.u± . . .

with o I u, then this constitutes a context switch

In general, we need a more restrictive definition

22

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent
b+c+ dependent

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent
b+c+ dependent
a+b+ not dependent

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent
b+c+ dependent
a+b+ not dependent
a+c+b+ not dependent

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent
b+c+ dependent
a+b+ not dependent
a+c+b+ not dependent

a+a− dependent

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent
b+c+ dependent
a+b+ not dependent
a+c+b+ not dependent

a+a− dependent
a+b+b−a− not dependent

23

Dependent computations

Definition
A sequence of operations m is called dependent

if for all o±,u± in m with o ̸= u, o I u does not hold.

•
a

•c

•
b

a+c+ dependent
b+c+ dependent
a+b+ not dependent
a+c+b+ not dependent

a+a− dependent
a+b+b−a− not dependent

but a+a− ∼= a+b+b−a− !
23

Contexts & context switches

Let m be a sequence of operations

24

Contexts & context switches

Let m be a sequence of operations

Its first context is its maximal dependent prefix

24

Contexts & context switches

Let m be a sequence of operations

Its first context is its maximal dependent prefix

Inductively:
The ith context of m is the maximal dependent prefix of m with
the first i− 1 contexts removed

24

Contexts & context switches

Let m be a sequence of operations

Its first context is its maximal dependent prefix

Inductively:
The ith context of m is the maximal dependent prefix of m with
the first i− 1 contexts removed

The number of context switches cs(m) is the number of
contexts minus 1

24

In the examples

Assume the number of context switches is bounded by k

•
a

•
b PDS no restriction

•
a

•
b VASS changing the counter ⩽ k times

•
a

•
b integer

VASS
changing the counter ⩽ k times

•aℓ

•bℓ

•ar

•br

MPDS changing the stack ⩽ k times
25

The result

BCSREACH for valence systems over graph monoids
Given: Valence system A overMG, number k (in unary)
Decide: Is there (qinit, ε) → (qfinal,m)

with m ∼= ε and cs(m) ⩽ k?

26

The result

BCSREACH for valence systems over graph monoids
Given: Valence system A overMG, number k (in unary)
Decide: Is there (qinit, ε) → (qfinal,m)

with m ∼= ε and cs(m) ⩽ k?

Theorem
BCSREACH for valence systems over graph monoids
is in NP (for all graph monoids).

26

The proof / The algorithm

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Good: Bound cs(m) ⩽ k

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Good: Bound cs(m) ⩽ k

Bad: No bound on length of length of m

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Good: Bound cs(m) ⩽ k

Bad: No bound on length of length of m

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Good: Bound cs(m) ⩽ k

Bad: No bound on length of length of m

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Good: Bound cs(m) ⩽ k

Bad: No bound on length of length of m

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Proof outline

Need to find a computation (qinit, ε) →∗ (qfinal,m) with m ∼= ε

Good: Bound cs(m) ⩽ k

Bad: No bound on length of length of m

Consider blockwise-reduction

If contexts irreducible, get existence of a
reducible block decomposition of length ⩽ k2

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition
using guessing and representing blocks as finite automata

27

Block decomposition

If m ∼= ε, then there is a reduction of m that
swaps letters
cancels letters.

28

Block decomposition

If m ∼= ε, then there is a reduction of m that
swaps letters
cancels letters.

Can define similarly a notation of reduction that
swaps blocks (infixes)
cancels blocks

in one step.

28

Block decomposition

If m ∼= ε, then there is a reduction of m that
swaps letters
cancels letters.

Can define similarly a notation of reduction that
swaps blocks (infixes)
cancels blocks

in one step.

E.g. m1.m2 → m2.m1 if every symbol in m1 commutes with every
symbol in m2

28

Block decomposition

Let m = m1,m2, . . . ,mn be a decomposition of m into blocks.

If m ∼= ε, then its decomposition into letters is
always freely reducible.

Coarser decompositions might not be freely reducible:

o+u+ , u− , o−

29

Block decomposition

Let m = m1,m2, . . . ,mn be a decomposition of m into blocks.

If m can be reduced to ε by blockwise operations,
call it freely reducible.

If m ∼= ε, then its decomposition into letters is
always freely reducible.

Coarser decompositions might not be freely reducible:

o+u+ , u− , o−

29

Block decomposition

Let m = m1,m2, . . . ,mn be a decomposition of m into blocks.

If m can be reduced to ε by blockwise operations,
call it freely reducible.

If m ∼= ε, then its decomposition into letters is
always freely reducible.

Coarser decompositions might not be freely reducible:

o+u+ , u− , o−

29

Block decomposition

Let m = m1,m2, . . . ,mn be a decomposition of m into blocks.

If m can be reduced to ε by blockwise operations,
call it freely reducible.

If m ∼= ε, then its decomposition into letters is
always freely reducible.

Coarser decompositions might not be freely reducible:

o+u+ , u− , o−

29

Block decomposition

Sequence is irreducible if it is not congruent to a shorter one

30

Block decomposition

Sequence is irreducible if it is not congruent to a shorter one

Theorem
Let m be a sequence of operations with

k contexts
each of them irreducible, and
m ∼= ε.

Then there is a decomposition of m into ⩽ k2 blocks that is
freely reducible.

30

Block decomposition

Sequence is irreducible if it is not congruent to a shorter one

Theorem
Let m be a sequence of operations with

k contexts
each of them irreducible, and
m ∼= ε.

Then there is a decomposition of m into ⩽ k2 blocks that is
freely reducible.

Size of the decomposition is independent of the length of m

30

Block decomposition

Sequence is irreducible if it is not congruent to a shorter one

Theorem
Let m be a sequence of operations with

k contexts
each of them irreducible, and
m ∼= ε.

Then there is a decomposition of m into ⩽ k2 blocks that is
freely reducible.

Size of the decomposition is independent of the length of m
Existence can be checked algorithmically

30

The algorithm, Step I

The algorithm

Given: valence system A , bound k

1. Guess ⩽ k dependent parts of A
2. Saturate each part:

q q′ · · · p′ pa+ ε ε a−

ε

31

The algorithm, Step I

The algorithm

Given: valence system A , bound k

Part I: Enforcing irreducibility

1. Guess ⩽ k dependent parts of A
2. Saturate each part:

q q′ · · · p′ pa+ ε ε a−

ε

31

The algorithm, Step I

The algorithm

Given: valence system A , bound k

Part I: Enforcing irreducibility

1. Guess ⩽ k dependent parts of A

2. Saturate each part:

q q′ · · · p′ pa+ ε ε a−

ε

31

The algorithm, Step I

The algorithm

Given: valence system A , bound k

Part I: Enforcing irreducibility

1. Guess ⩽ k dependent parts of A
2. Saturate each part:

q q′ · · · p′ pa+ ε ε a−

ε

31

The algorithm, Step I

Let Asat be the resulting valence system

32

The algorithm, Step I

Let Asat be the resulting valence system

Theorem
(qinit, ε) →∗ (qfinal,m) in A with m ∼= ε and cs(m) ⩽ k,

32

The algorithm, Step I

Let Asat be the resulting valence system

Theorem
(qinit, ε) →∗ (qfinal,m) in A with m ∼= ε and cs(m) ⩽ k,

iff

(qinit, ε) →∗ (qfinal,m′) in Asat with m′ ∼= ε, cs(m′) ⩽ k,
and contexts of m′ irreducible.

32

The algorithm, Step II

Part II:
Checking the existence of a freely reducible block
decomposition

3. For each context i, guess part of Asat that is used in block
mi,j as NFA Ai,j

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

Swap rule applicable to Ai,j, Ai′,j′

if ∀o± ∈ Alphabet(Ai,j) ∀u± ∈ Alphabet(Ai′,j′) : o I u

Cancel rule applicable to Ai,j, Ai′,j′

if L
(
Ai,j

)
∩ L

(
Ai′,j′

)inverse is non-empty

33

The algorithm, Step II

Part II:
Checking the existence of a freely reducible block
decomposition

3. For each context i, guess part of Asat that is used in block
mi,j as NFA Ai,j

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

Swap rule applicable to Ai,j, Ai′,j′

if ∀o± ∈ Alphabet(Ai,j) ∀u± ∈ Alphabet(Ai′,j′) : o I u

Cancel rule applicable to Ai,j, Ai′,j′

if L
(
Ai,j

)
∩ L

(
Ai′,j′

)inverse is non-empty

33

The algorithm, Step II

Part II:
Checking the existence of a freely reducible block
decomposition

3. For each context i, guess part of Asat that is used in block
mi,j as NFA Ai,j

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

Swap rule applicable to Ai,j, Ai′,j′

if ∀o± ∈ Alphabet(Ai,j) ∀u± ∈ Alphabet(Ai′,j′) : o I u

Cancel rule applicable to Ai,j, Ai′,j′

if L
(
Ai,j

)
∩ L

(
Ai′,j′

)inverse is non-empty

33

The algorithm, Step II

Part II:
Checking the existence of a freely reducible block
decomposition

3. For each context i, guess part of Asat that is used in block
mi,j as NFA Ai,j

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

Swap rule applicable to Ai,j, Ai′,j′

if ∀o± ∈ Alphabet(Ai,j) ∀u± ∈ Alphabet(Ai′,j′) : o I u

Cancel rule applicable to Ai,j, Ai′,j′

if L
(
Ai,j

)
∩ L

(
Ai′,j′

)inverse is non-empty

33

The algorithm, Step II

Part II:
Checking the existence of a freely reducible block
decomposition

3. For each context i, guess part of Asat that is used in block
mi,j as NFA Ai,j

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

Swap rule applicable to Ai,j, Ai′,j′

if ∀o± ∈ Alphabet(Ai,j) ∀u± ∈ Alphabet(Ai′,j′) : o I u

Cancel rule applicable to Ai,j, Ai′,j′

if L
(
Ai,j

)
∩ L

(
Ai′,j′

)inverse is non-empty

33

The algorithm, Step II

Part II:
Checking the existence of a freely reducible block
decomposition

3. For each context i, guess part of Asat that is used in block
mi,j as NFA Ai,j

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

Swap rule applicable to Ai,j, Ai′,j′

if ∀o± ∈ Alphabet(Ai,j) ∀u± ∈ Alphabet(Ai′,j′) : o I u

Cancel rule applicable to Ai,j, Ai′,j′

if L
(
Ai,j

)
∩ L

(
Ai′,j′

)inverse is non-empty
33

Complexity for fixed graphs

Complexity for fixed graphs

Now, assume that the graph G is fixed, consider BCSREACH(G)

34

Complexity for fixed graphs

Now, assume that the graph G is fixed, consider BCSREACH(G)

Let G− denote G with self-loops removed.

34

Complexity for fixed graphs

Now, assume that the graph G is fixed, consider BCSREACH(G)

Let G− denote G with self-loops removed.

Theorem
If G− is a clique, then BCSREACH(G) is NL-complete.

34

Complexity for fixed graphs

Now, assume that the graph G is fixed, consider BCSREACH(G)

Let G− denote G with self-loops removed.

P4

=

C4

34

Complexity for fixed graphs

Now, assume that the graph G is fixed, consider BCSREACH(G)

Let G− denote G with self-loops removed.

P4

=

C4
Theorem
If G− contains C4 as induced subgraph,
then BCSREACH(G) is NP-complete.

34

Complexity for fixed graphs

Now, assume that the graph G is fixed, consider BCSREACH(G)

Let G− denote G with self-loops removed.

P4

=

C4
Theorem
If G− contains C4 as induced subgraph,
then BCSREACH(G) is NP-complete.

Theorem
If G− contains neither C4 nor P4 as induced subgraphs,
then BCSREACH(G) is in P.

34

Conclusion

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP.

+ almost complete classification of complexity for fixed graphs.

35

Conclusion

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:

Complexity for valence systems over P4?
Bounded phase switching?
BCS for reachability games?
Richer model supporting queues, higher order?

35

Conclusion

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:
Complexity for valence systems over P4?

Bounded phase switching?
BCS for reachability games?
Richer model supporting queues, higher order?

35

Conclusion

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:
Complexity for valence systems over P4?
Bounded phase switching?

BCS for reachability games?
Richer model supporting queues, higher order?

35

Conclusion

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:
Complexity for valence systems over P4?
Bounded phase switching?
BCS for reachability games?

Richer model supporting queues, higher order?

35

Conclusion

Theorem
Reachability under bounded context switching

for valence systems over graph monoids

is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:
Complexity for valence systems over P4?
Bounded phase switching?
BCS for reachability games?
Richer model supporting queues, higher order?

35

Thank you!

Questions?

	1. BCS
	2. Valence systems
	3. BCS for valence systems
	The proof / The algorithm
	Complexity for fixed graphs
	Appendix

